环形迭代函数系统的旋转熵

IF 0.4 Q4 MATHEMATICS
Fatemeh Rezaei, M. F. Nia
{"title":"环形迭代函数系统的旋转熵","authors":"Fatemeh Rezaei, M. F. Nia","doi":"10.1080/1726037X.2021.2009199","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider an iterated functions system (IFS) whose functions are homeomorphisms on an annulus. We define rotational spanning and separating sets for the IFS and then provide two definitions for the rotational entropy of the IFS. We show that in the IFSs, the rotational entropy is a topological invariant. We prove that the rotational entropy of an annular IFS is equal to the rotational entropy on its non-wandering set for sequences of functions with a specific condition.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"19 1","pages":"189 - 202"},"PeriodicalIF":0.4000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotational Entropy of an Annular Iterated Functions System\",\"authors\":\"Fatemeh Rezaei, M. F. Nia\",\"doi\":\"10.1080/1726037X.2021.2009199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we consider an iterated functions system (IFS) whose functions are homeomorphisms on an annulus. We define rotational spanning and separating sets for the IFS and then provide two definitions for the rotational entropy of the IFS. We show that in the IFSs, the rotational entropy is a topological invariant. We prove that the rotational entropy of an annular IFS is equal to the rotational entropy on its non-wandering set for sequences of functions with a specific condition.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"19 1\",\"pages\":\"189 - 202\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2021.2009199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2021.2009199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文考虑环上函数为同胚的迭代函数系统。我们定义了IFS的旋转生成集和分离集,并给出了IFS旋转熵的两种定义。我们证明了在ifs中,旋转熵是拓扑不变量。对于具有特定条件的函数序列,证明了环形IFS的旋转熵等于其非游荡集上的旋转熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotational Entropy of an Annular Iterated Functions System
Abstract In this article, we consider an iterated functions system (IFS) whose functions are homeomorphisms on an annulus. We define rotational spanning and separating sets for the IFS and then provide two definitions for the rotational entropy of the IFS. We show that in the IFSs, the rotational entropy is a topological invariant. We prove that the rotational entropy of an annular IFS is equal to the rotational entropy on its non-wandering set for sequences of functions with a specific condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信