F -同晶单群的极大环面及其在阿贝尔变中的应用

IF 1.2 1区 数学 Q1 MATHEMATICS
Emiliano Ambrosi, Marco d’Addezio
{"title":"F -同晶单群的极大环面及其在阿贝尔变中的应用","authors":"Emiliano Ambrosi, Marco d’Addezio","doi":"10.14231/AG-2022-019","DOIUrl":null,"url":null,"abstract":"Let $X_0$ be a smooth geometrically connected variety defined over a finite field $\\mathbb F_q$ and let $\\mathcal E_0^{\\dagger}$ be an irreducible overconvergent $F$-isocrystal on $X_0$. We show that if a subobject of minimal slope of the underlying convergent F-isocrystal $\\mathcal E_0$ admits a non-zero morphism to $\\mathcal O_{X_0}$ as convergent isocrystal, then $\\mathcal E_0^{\\dagger}$ is isomorphic to $\\mathcal O^{\\dagger}_{X_0}$ as overconvergent isocrystal. This proves a special case of a conjecture of Kedlaya. The key ingredient in the proof is the study of the monodromy group of $\\mathcal E_0^{\\dagger}$ and the subgroup defined by $\\mathcal E_0$. The new input in this setting is that the subgroup contains a maximal torus of the entire monodromy group. This is a consequence of the existence of a Frobenius torus of maximal dimension. As an application, we prove a finiteness result for the torsion points of abelian varieties, which extends the previous theorem of Lang-N\\'eron and answers positively a question of Esnault.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Maximal tori of monodromy groups of $F$-isocrystals and an application to abelian varieties\",\"authors\":\"Emiliano Ambrosi, Marco d’Addezio\",\"doi\":\"10.14231/AG-2022-019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X_0$ be a smooth geometrically connected variety defined over a finite field $\\\\mathbb F_q$ and let $\\\\mathcal E_0^{\\\\dagger}$ be an irreducible overconvergent $F$-isocrystal on $X_0$. We show that if a subobject of minimal slope of the underlying convergent F-isocrystal $\\\\mathcal E_0$ admits a non-zero morphism to $\\\\mathcal O_{X_0}$ as convergent isocrystal, then $\\\\mathcal E_0^{\\\\dagger}$ is isomorphic to $\\\\mathcal O^{\\\\dagger}_{X_0}$ as overconvergent isocrystal. This proves a special case of a conjecture of Kedlaya. The key ingredient in the proof is the study of the monodromy group of $\\\\mathcal E_0^{\\\\dagger}$ and the subgroup defined by $\\\\mathcal E_0$. The new input in this setting is that the subgroup contains a maximal torus of the entire monodromy group. This is a consequence of the existence of a Frobenius torus of maximal dimension. As an application, we prove a finiteness result for the torsion points of abelian varieties, which extends the previous theorem of Lang-N\\\\'eron and answers positively a question of Esnault.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2022-019\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2022-019","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

设$X_0$是在有限域$\mathbb F_q$上定义的光滑几何连通变种,设$\mathcal E_0^{\dagger}$是$X_0$$上的不可约超收敛$F$-等晶。我们证明了如果下面的收敛F-等晶$\mathcal E_0$的最小斜率的子对象承认$\mathical O_{X_0}$为收敛等晶的非零态射,那么$\mathcalE_0^{\dagger}$同构于$\mathicalO^{\dagger}_{X_0}$作为过收敛等晶。这证明了Kedlaya猜想的一个特例。证明中的关键因素是研究$\mathcal E_0^{\dagger}$的单调群和$\mathical E_0$定义的子群。这个设置中的新输入是,子群包含整个单调群的最大环面。这是极大维Frobenius环面存在的结果。作为一个应用,我们证明了阿贝尔变种扭点的一个有限性结果,它扩展了Lang-N’eron的先前定理,并肯定地回答了Esnault的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal tori of monodromy groups of $F$-isocrystals and an application to abelian varieties
Let $X_0$ be a smooth geometrically connected variety defined over a finite field $\mathbb F_q$ and let $\mathcal E_0^{\dagger}$ be an irreducible overconvergent $F$-isocrystal on $X_0$. We show that if a subobject of minimal slope of the underlying convergent F-isocrystal $\mathcal E_0$ admits a non-zero morphism to $\mathcal O_{X_0}$ as convergent isocrystal, then $\mathcal E_0^{\dagger}$ is isomorphic to $\mathcal O^{\dagger}_{X_0}$ as overconvergent isocrystal. This proves a special case of a conjecture of Kedlaya. The key ingredient in the proof is the study of the monodromy group of $\mathcal E_0^{\dagger}$ and the subgroup defined by $\mathcal E_0$. The new input in this setting is that the subgroup contains a maximal torus of the entire monodromy group. This is a consequence of the existence of a Frobenius torus of maximal dimension. As an application, we prove a finiteness result for the torsion points of abelian varieties, which extends the previous theorem of Lang-N\'eron and answers positively a question of Esnault.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信