Andrew R. Moorea, Jasmin C. Hutchinsona, Christa R. Wintera, Paul C. Daltona, Vincent J. Paolonea
{"title":"耐力运动方式对疲劳标志物的影响","authors":"Andrew R. Moorea, Jasmin C. Hutchinsona, Christa R. Wintera, Paul C. Daltona, Vincent J. Paolonea","doi":"10.7575/aiac.ijkss.v.9n.3p35","DOIUrl":null,"url":null,"abstract":"Background: Exercise power output, and resulting fatigue, is regulated based on central and peripheral sensory input. Whether exercise mode, specifically, contributes to this regulation remains unexplored. Objective: This study was designed to determine if differences in markers of fatigue would be present during two time trials of similar duration and intensity, as a result of exercise mode (cycling and rowing). Method: In a randomized crossover design, nine subjects completed the two 7-min time trials, on different days. Exercise power output, heart rate, rating of perceived exertion, and blood lactate measurements were analyzed using repeated-measures ANOVAs. Results: There was a significant interaction between mode and time for power output (p =.02), but no significant differences between matched time points were observed for any of the dependent variables used to assess fatigue (p >.05). Conclusion: Similar levels of heart rate, perceived exertion, and blood lactate for time trials on different modes, but with the same duration and directed intensity, suggest that in a laboratory environment, exercise is regulated more by physiological disturbance and sensory cues than by exercise mode. These findings support the sensory tolerance limit of exercise fatigue.","PeriodicalId":36327,"journal":{"name":"International Journal of Kinesiology and Sports Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Effect of Endurance Exercise Modality on Markers of Fatigue\",\"authors\":\"Andrew R. Moorea, Jasmin C. Hutchinsona, Christa R. Wintera, Paul C. Daltona, Vincent J. Paolonea\",\"doi\":\"10.7575/aiac.ijkss.v.9n.3p35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Exercise power output, and resulting fatigue, is regulated based on central and peripheral sensory input. Whether exercise mode, specifically, contributes to this regulation remains unexplored. Objective: This study was designed to determine if differences in markers of fatigue would be present during two time trials of similar duration and intensity, as a result of exercise mode (cycling and rowing). Method: In a randomized crossover design, nine subjects completed the two 7-min time trials, on different days. Exercise power output, heart rate, rating of perceived exertion, and blood lactate measurements were analyzed using repeated-measures ANOVAs. Results: There was a significant interaction between mode and time for power output (p =.02), but no significant differences between matched time points were observed for any of the dependent variables used to assess fatigue (p >.05). Conclusion: Similar levels of heart rate, perceived exertion, and blood lactate for time trials on different modes, but with the same duration and directed intensity, suggest that in a laboratory environment, exercise is regulated more by physiological disturbance and sensory cues than by exercise mode. These findings support the sensory tolerance limit of exercise fatigue.\",\"PeriodicalId\":36327,\"journal\":{\"name\":\"International Journal of Kinesiology and Sports Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Kinesiology and Sports Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7575/aiac.ijkss.v.9n.3p35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Kinesiology and Sports Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7575/aiac.ijkss.v.9n.3p35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
The Effect of Endurance Exercise Modality on Markers of Fatigue
Background: Exercise power output, and resulting fatigue, is regulated based on central and peripheral sensory input. Whether exercise mode, specifically, contributes to this regulation remains unexplored. Objective: This study was designed to determine if differences in markers of fatigue would be present during two time trials of similar duration and intensity, as a result of exercise mode (cycling and rowing). Method: In a randomized crossover design, nine subjects completed the two 7-min time trials, on different days. Exercise power output, heart rate, rating of perceived exertion, and blood lactate measurements were analyzed using repeated-measures ANOVAs. Results: There was a significant interaction between mode and time for power output (p =.02), but no significant differences between matched time points were observed for any of the dependent variables used to assess fatigue (p >.05). Conclusion: Similar levels of heart rate, perceived exertion, and blood lactate for time trials on different modes, but with the same duration and directed intensity, suggest that in a laboratory environment, exercise is regulated more by physiological disturbance and sensory cues than by exercise mode. These findings support the sensory tolerance limit of exercise fatigue.