{"title":"矩形矩阵的w加权GDMP逆","authors":"Amit Kumar, Vaibhav Shekhar, Debasisha Mishra","doi":"10.13001/ela.2022.7015","DOIUrl":null,"url":null,"abstract":"In this article, we introduce two new generalized inverses for rectangular matrices called $W$-weighted generalized-Drazin--Moore--Penrose (GDMP) and $W$-weighted generalized-Drazin-reflexive (GDR) inverses. The first generalized inverse can be seen as a generalization of the recently introduced GDMP inverse for a square matrix to a rectangular matrix. The second class of generalized inverse contains the class of the first generalized inverse. We then exploit their various properties and establish that the proposed generalized inverses coincide with different well-known generalized inverses under certain assumptions. We also obtain a representation of $W$-weighted GDMP inverse employing EP-core nilpotent decomposition. We define the dual of $W$-weighted GDMP inverse and obtain analogue results. Further, we discuss additive properties, reverse- and forward-order laws for GD, $W$-weighted GD, GDMP, and $W$-weighted GDMP generalized inverses.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"W-weighted GDMP inverse for rectangular matrices\",\"authors\":\"Amit Kumar, Vaibhav Shekhar, Debasisha Mishra\",\"doi\":\"10.13001/ela.2022.7015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce two new generalized inverses for rectangular matrices called $W$-weighted generalized-Drazin--Moore--Penrose (GDMP) and $W$-weighted generalized-Drazin-reflexive (GDR) inverses. The first generalized inverse can be seen as a generalization of the recently introduced GDMP inverse for a square matrix to a rectangular matrix. The second class of generalized inverse contains the class of the first generalized inverse. We then exploit their various properties and establish that the proposed generalized inverses coincide with different well-known generalized inverses under certain assumptions. We also obtain a representation of $W$-weighted GDMP inverse employing EP-core nilpotent decomposition. We define the dual of $W$-weighted GDMP inverse and obtain analogue results. Further, we discuss additive properties, reverse- and forward-order laws for GD, $W$-weighted GD, GDMP, and $W$-weighted GDMP generalized inverses.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
In this article, we introduce two new generalized inverses for rectangular matrices called $W$-weighted generalized-Drazin--Moore--Penrose (GDMP) and $W$-weighted generalized-Drazin-reflexive (GDR) inverses. The first generalized inverse can be seen as a generalization of the recently introduced GDMP inverse for a square matrix to a rectangular matrix. The second class of generalized inverse contains the class of the first generalized inverse. We then exploit their various properties and establish that the proposed generalized inverses coincide with different well-known generalized inverses under certain assumptions. We also obtain a representation of $W$-weighted GDMP inverse employing EP-core nilpotent decomposition. We define the dual of $W$-weighted GDMP inverse and obtain analogue results. Further, we discuss additive properties, reverse- and forward-order laws for GD, $W$-weighted GD, GDMP, and $W$-weighted GDMP generalized inverses.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.