在Legendrian接触DGA上具有无限单态的编织环

Pub Date : 2022-09-19 DOI:10.1112/topo.12264
Roger Casals, Lenhard Ng
{"title":"在Legendrian接触DGA上具有无限单态的编织环","authors":"Roger Casals,&nbsp;Lenhard Ng","doi":"10.1112/topo.12264","DOIUrl":null,"url":null,"abstract":"<p>We present the first examples of elements in the fundamental group of the space of Legendrian links in <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mn>3</mn>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>ξ</mi>\n <mtext>st</mtext>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathbb {S}^3,\\xi _{\\text{st}})$</annotation>\n </semantics></math> whose action on the Legendrian contact DGA is of infinite order. This allows us to construct the first families of Legendrian links that can be shown to admit infinitely many Lagrangian fillings by Floer-theoretic techniques. These new families include the first-known Legendrian links with infinitely many fillings that are not rainbow closures of positive braids, and the smallest Legendrian link with infinitely many fillings known to date. We discuss how to use our examples to construct other links with infinitely many fillings, and in particular give the first Floer-theoretic proof that Legendrian <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(n,m)$</annotation>\n </semantics></math> torus links have infinitely many Lagrangian fillings if <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>6</mn>\n </mrow>\n <annotation>$n\\geqslant 3,m\\geqslant 6$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>(</mo>\n <mn>4</mn>\n <mo>,</mo>\n <mn>4</mn>\n <mo>)</mo>\n <mo>,</mo>\n <mo>(</mo>\n <mn>4</mn>\n <mo>,</mo>\n <mn>5</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n,m)=(4,4),(4,5)$</annotation>\n </semantics></math>. In addition, for any given higher genus, we construct a Weinstein 4-manifold homotopic to the 2-sphere whose wrapped Fukaya category can distinguish infinitely many exact closed Lagrangian surfaces of that genus in the same smooth isotopy class, but distinct Hamiltonian isotopy classes. A key technical ingredient behind our results is a new combinatorial formula for decomposable cobordism maps between Legendrian contact DGAs with integer (group ring) coefficients.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Braid loops with infinite monodromy on the Legendrian contact DGA\",\"authors\":\"Roger Casals,&nbsp;Lenhard Ng\",\"doi\":\"10.1112/topo.12264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present the first examples of elements in the fundamental group of the space of Legendrian links in <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>ξ</mi>\\n <mtext>st</mtext>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathbb {S}^3,\\\\xi _{\\\\text{st}})$</annotation>\\n </semantics></math> whose action on the Legendrian contact DGA is of infinite order. This allows us to construct the first families of Legendrian links that can be shown to admit infinitely many Lagrangian fillings by Floer-theoretic techniques. These new families include the first-known Legendrian links with infinitely many fillings that are not rainbow closures of positive braids, and the smallest Legendrian link with infinitely many fillings known to date. We discuss how to use our examples to construct other links with infinitely many fillings, and in particular give the first Floer-theoretic proof that Legendrian <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n,m)$</annotation>\\n </semantics></math> torus links have infinitely many Lagrangian fillings if <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>⩾</mo>\\n <mn>6</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 3,m\\\\geqslant 6$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mn>4</mn>\\n <mo>,</mo>\\n <mn>4</mn>\\n <mo>)</mo>\\n <mo>,</mo>\\n <mo>(</mo>\\n <mn>4</mn>\\n <mo>,</mo>\\n <mn>5</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n,m)=(4,4),(4,5)$</annotation>\\n </semantics></math>. In addition, for any given higher genus, we construct a Weinstein 4-manifold homotopic to the 2-sphere whose wrapped Fukaya category can distinguish infinitely many exact closed Lagrangian surfaces of that genus in the same smooth isotopy class, but distinct Hamiltonian isotopy classes. A key technical ingredient behind our results is a new combinatorial formula for decomposable cobordism maps between Legendrian contact DGAs with integer (group ring) coefficients.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们给出了(s3, ξ st) $(\mathbb {S}^3,\xi _{\text{st}})$中Legendrian连杆空间基本群中元素的第一个例子,这些元素对Legendrian接触DGA的作用是无限阶的。这使得我们可以构造出第一族的Legendrian连杆,通过花理论技术可以证明它允许无限多个拉格朗日填充。这些新家族包括第一个已知的具有无限多填充的Legendrian链,它们不是正辫的彩虹闭包,以及迄今为止已知的最小的具有无限多填充的Legendrian链。我们讨论了如何用我们的例子构造具有无限多填充的其他环,特别是给出了Legendrian (n,m) $(n,m)$环面链接有无限多个拉格朗日填充如果n大于或等于3,m大于或等于$n\geqslant 3,m\geqslant 6$或(n,M) = (4,4), (4,5) $(n,m)=(4,4),(4,5)$。此外,对于任何给定的高格,我们构造了一个2球的Weinstein 4流形同伦,其包裹的Fukaya范畴可以区分该格的无限多个精确闭拉格朗日曲面在同一个光滑同位素类中,但不同的hamilton同位素类。我们的结果背后的一个关键技术成分是一个新的组合公式,用于具有整数(群环)系数的Legendrian接触DGAs之间的可分解协同映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Braid loops with infinite monodromy on the Legendrian contact DGA

We present the first examples of elements in the fundamental group of the space of Legendrian links in ( S 3 , ξ st ) $(\mathbb {S}^3,\xi _{\text{st}})$ whose action on the Legendrian contact DGA is of infinite order. This allows us to construct the first families of Legendrian links that can be shown to admit infinitely many Lagrangian fillings by Floer-theoretic techniques. These new families include the first-known Legendrian links with infinitely many fillings that are not rainbow closures of positive braids, and the smallest Legendrian link with infinitely many fillings known to date. We discuss how to use our examples to construct other links with infinitely many fillings, and in particular give the first Floer-theoretic proof that Legendrian ( n , m ) $(n,m)$ torus links have infinitely many Lagrangian fillings if n 3 , m 6 $n\geqslant 3,m\geqslant 6$ or ( n , m ) = ( 4 , 4 ) , ( 4 , 5 ) $(n,m)=(4,4),(4,5)$ . In addition, for any given higher genus, we construct a Weinstein 4-manifold homotopic to the 2-sphere whose wrapped Fukaya category can distinguish infinitely many exact closed Lagrangian surfaces of that genus in the same smooth isotopy class, but distinct Hamiltonian isotopy classes. A key technical ingredient behind our results is a new combinatorial formula for decomposable cobordism maps between Legendrian contact DGAs with integer (group ring) coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信