{"title":"桥梁设计中存在逆序上下解的四阶四点BVP问题的存在唯一性结果","authors":"Nazia Urus, Amit Verma","doi":"10.58997/ejde.2023.51","DOIUrl":null,"url":null,"abstract":"In this article, we establish the existence of solutions for a fourth-order four-point non-linear boundary value problem (BVP) which arises in bridge design, $$\\displaylines{ - y^{(4)}( s)-\\lambda y''( s)=\\mathcal{F}( s, y( s)), \\quad s\\in(0,1),\\cry(0)=0,\\quad y(1)= \\delta_1 y(\\eta_1)+\\delta_2 y(\\eta_2),\\cr y''(0)=0,\\quad y''(1)= \\delta_1 y''(\\eta_1)+\\delta_2 y''(\\eta_2), }$$ where \\(\\mathcal{F} \\in C([0,1]\\times \\mathbb{R},\\mathbb{R})\\), \\(\\delta_1, \\delta_2>0\\), \\(0<\\eta_1\\le \\eta_2 <1\\), \\(\\lambda=\\zeta_1+\\zeta_2 \\), where \\(\\zeta_1\\) and \\(\\zeta_2\\) are the real constants. We have explored all gathered \\(0<\\zeta_1<\\zeta_2\\), \\(\\zeta_1<0<\\zeta_2\\), and \\( \\zeta_1<\\zeta_2<0 \\). We extend the monotone iterative technique and establish the existence results with reverse ordered upper and lower solutions to fourth-orderfour-point non-linear BVPs. \nFor more information see https://ejde.math.txstate.edu/Volumes/2023/51/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness results for fourth-order four-point BVP arising in bridge design in the presence of reverse ordered upper and lower solutions\",\"authors\":\"Nazia Urus, Amit Verma\",\"doi\":\"10.58997/ejde.2023.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we establish the existence of solutions for a fourth-order four-point non-linear boundary value problem (BVP) which arises in bridge design, $$\\\\displaylines{ - y^{(4)}( s)-\\\\lambda y''( s)=\\\\mathcal{F}( s, y( s)), \\\\quad s\\\\in(0,1),\\\\cry(0)=0,\\\\quad y(1)= \\\\delta_1 y(\\\\eta_1)+\\\\delta_2 y(\\\\eta_2),\\\\cr y''(0)=0,\\\\quad y''(1)= \\\\delta_1 y''(\\\\eta_1)+\\\\delta_2 y''(\\\\eta_2), }$$ where \\\\(\\\\mathcal{F} \\\\in C([0,1]\\\\times \\\\mathbb{R},\\\\mathbb{R})\\\\), \\\\(\\\\delta_1, \\\\delta_2>0\\\\), \\\\(0<\\\\eta_1\\\\le \\\\eta_2 <1\\\\), \\\\(\\\\lambda=\\\\zeta_1+\\\\zeta_2 \\\\), where \\\\(\\\\zeta_1\\\\) and \\\\(\\\\zeta_2\\\\) are the real constants. We have explored all gathered \\\\(0<\\\\zeta_1<\\\\zeta_2\\\\), \\\\(\\\\zeta_1<0<\\\\zeta_2\\\\), and \\\\( \\\\zeta_1<\\\\zeta_2<0 \\\\). We extend the monotone iterative technique and establish the existence results with reverse ordered upper and lower solutions to fourth-orderfour-point non-linear BVPs. \\nFor more information see https://ejde.math.txstate.edu/Volumes/2023/51/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence and uniqueness results for fourth-order four-point BVP arising in bridge design in the presence of reverse ordered upper and lower solutions
In this article, we establish the existence of solutions for a fourth-order four-point non-linear boundary value problem (BVP) which arises in bridge design, $$\displaylines{ - y^{(4)}( s)-\lambda y''( s)=\mathcal{F}( s, y( s)), \quad s\in(0,1),\cry(0)=0,\quad y(1)= \delta_1 y(\eta_1)+\delta_2 y(\eta_2),\cr y''(0)=0,\quad y''(1)= \delta_1 y''(\eta_1)+\delta_2 y''(\eta_2), }$$ where \(\mathcal{F} \in C([0,1]\times \mathbb{R},\mathbb{R})\), \(\delta_1, \delta_2>0\), \(0<\eta_1\le \eta_2 <1\), \(\lambda=\zeta_1+\zeta_2 \), where \(\zeta_1\) and \(\zeta_2\) are the real constants. We have explored all gathered \(0<\zeta_1<\zeta_2\), \(\zeta_1<0<\zeta_2\), and \( \zeta_1<\zeta_2<0 \). We extend the monotone iterative technique and establish the existence results with reverse ordered upper and lower solutions to fourth-orderfour-point non-linear BVPs.
For more information see https://ejde.math.txstate.edu/Volumes/2023/51/abstr.html