{"title":"基于IEF-PCM计算的多氯联苯半衰期预测","authors":"Shi-Jun Liao, Xinliang Yu, Jianfang Chen, Xianwei Huang","doi":"10.1142/s0219633619500330","DOIUrl":null,"url":null,"abstract":"Three-dimensional structures of 62 polychlorinated biphenyl (PCB) congeners were optimized with the integral equation formalism polarizable continuum model (IEF-PCM) in combination with the density functional theory (DFT) method at 6-31G(d) level. By applying support vector machine (SVM) algorithm, a nonlinear quantitative structure–property relationship (QSPR) model was built to predict half-lives (log [Formula: see text]) of 62 PCBs in juvenile rainbow trout. The optimal SVM model based on the parameters [Formula: see text] of 854.721 and [Formula: see text] of 0.0565 produces the root-mean-square (rms) errors of 0.0352 for the training set and 0.0446 for the test set, which are less than that of the previous models reported. The results suggest that it is feasible to build SVM models for the half-lives of PCBs with IEF-PCM and B3LYP/6-31G(d) for deriving structural descriptors.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633619500330","citationCount":"2","resultStr":"{\"title\":\"Prediction of the half-lives of polychlorinated biphenyls based on the IEF-PCM calculations\",\"authors\":\"Shi-Jun Liao, Xinliang Yu, Jianfang Chen, Xianwei Huang\",\"doi\":\"10.1142/s0219633619500330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional structures of 62 polychlorinated biphenyl (PCB) congeners were optimized with the integral equation formalism polarizable continuum model (IEF-PCM) in combination with the density functional theory (DFT) method at 6-31G(d) level. By applying support vector machine (SVM) algorithm, a nonlinear quantitative structure–property relationship (QSPR) model was built to predict half-lives (log [Formula: see text]) of 62 PCBs in juvenile rainbow trout. The optimal SVM model based on the parameters [Formula: see text] of 854.721 and [Formula: see text] of 0.0565 produces the root-mean-square (rms) errors of 0.0352 for the training set and 0.0446 for the test set, which are less than that of the previous models reported. The results suggest that it is feasible to build SVM models for the half-lives of PCBs with IEF-PCM and B3LYP/6-31G(d) for deriving structural descriptors.\",\"PeriodicalId\":49976,\"journal\":{\"name\":\"Journal of Theoretical & Computational Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s0219633619500330\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical & Computational Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219633619500330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633619500330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Prediction of the half-lives of polychlorinated biphenyls based on the IEF-PCM calculations
Three-dimensional structures of 62 polychlorinated biphenyl (PCB) congeners were optimized with the integral equation formalism polarizable continuum model (IEF-PCM) in combination with the density functional theory (DFT) method at 6-31G(d) level. By applying support vector machine (SVM) algorithm, a nonlinear quantitative structure–property relationship (QSPR) model was built to predict half-lives (log [Formula: see text]) of 62 PCBs in juvenile rainbow trout. The optimal SVM model based on the parameters [Formula: see text] of 854.721 and [Formula: see text] of 0.0565 produces the root-mean-square (rms) errors of 0.0352 for the training set and 0.0446 for the test set, which are less than that of the previous models reported. The results suggest that it is feasible to build SVM models for the half-lives of PCBs with IEF-PCM and B3LYP/6-31G(d) for deriving structural descriptors.
期刊介绍:
The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry.
JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem.
Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.