关于Martio猜想的注记

Pub Date : 2020-06-26 DOI:10.7146/math.scand.a-132257
Ville Tengvall
{"title":"关于Martio猜想的注记","authors":"Ville Tengvall","doi":"10.7146/math.scand.a-132257","DOIUrl":null,"url":null,"abstract":"We introduce a certain integrability condition for the reciprocal of the Jacobian determinant which guarantees the local homeomorphism property of quasiregular mappings with a small inner dilatation. This condition turns out to be sharp in the planar case. We also show that every branch point of a quasiregular mapping with a small inner dilatation is a Lebesgue point of the differential matrix of the mapping.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Remarks on Martio's conjecture\",\"authors\":\"Ville Tengvall\",\"doi\":\"10.7146/math.scand.a-132257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a certain integrability condition for the reciprocal of the Jacobian determinant which guarantees the local homeomorphism property of quasiregular mappings with a small inner dilatation. This condition turns out to be sharp in the planar case. We also show that every branch point of a quasiregular mapping with a small inner dilatation is a Lebesgue point of the differential matrix of the mapping.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-132257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-132257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们引入了Jacobian行列式倒数的一个可积条件,它保证了具有小内扩张的拟正则映射的局部同胚性。在平面情况下,这种情况是尖锐的。我们还证明了具有小内扩张的拟正则映射的每个分支点都是该映射的微分矩阵的Lebesgue点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Remarks on Martio's conjecture
We introduce a certain integrability condition for the reciprocal of the Jacobian determinant which guarantees the local homeomorphism property of quasiregular mappings with a small inner dilatation. This condition turns out to be sharp in the planar case. We also show that every branch point of a quasiregular mapping with a small inner dilatation is a Lebesgue point of the differential matrix of the mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信