减速阱中超冷中子的产生

IF 1 Q3 NUCLEAR SCIENCE & TECHNOLOGY
V. Nesvizhevsky, A. Sidorin
{"title":"减速阱中超冷中子的产生","authors":"V. Nesvizhevsky, A. Sidorin","doi":"10.3233/jnr-220006","DOIUrl":null,"url":null,"abstract":"This note proposes a new concept for the production of ultracold neutrons (UCNs) in a decelerating trap. UCNs are widely used in the physics of elementary particles and fundamental interactions, and can potentially be used in studies of condensed matter. However, most of these studies are limited by the available UCN densities and fluxes. One of the ways to increase them is to use peak fluxes in pulsed neutron sources, orders of magnitude larger than the mean values. Here, a concept of UCN sources is proposed, which allows to implement this idea. We propose to produce very cold neutrons (VCNs) in converters located in a neutron source, extract and slow them down to UCNs by a decelerating magnetic or material trap. As shown in this paper, for both pulsed and continuous neutron sources, this method could provide a high conversion efficiency of VCNs to UCNs with low losses of density in the phase space. More detailed calculations and the proposals for concrete technical designs are going to be developed in future publications.","PeriodicalId":44708,"journal":{"name":"Journal of Neutron Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Production of ultracold neutrons in a decelerating trap\",\"authors\":\"V. Nesvizhevsky, A. Sidorin\",\"doi\":\"10.3233/jnr-220006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note proposes a new concept for the production of ultracold neutrons (UCNs) in a decelerating trap. UCNs are widely used in the physics of elementary particles and fundamental interactions, and can potentially be used in studies of condensed matter. However, most of these studies are limited by the available UCN densities and fluxes. One of the ways to increase them is to use peak fluxes in pulsed neutron sources, orders of magnitude larger than the mean values. Here, a concept of UCN sources is proposed, which allows to implement this idea. We propose to produce very cold neutrons (VCNs) in converters located in a neutron source, extract and slow them down to UCNs by a decelerating magnetic or material trap. As shown in this paper, for both pulsed and continuous neutron sources, this method could provide a high conversion efficiency of VCNs to UCNs with low losses of density in the phase space. More detailed calculations and the proposals for concrete technical designs are going to be developed in future publications.\",\"PeriodicalId\":44708,\"journal\":{\"name\":\"Journal of Neutron Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neutron Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jnr-220006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutron Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了在减速阱中产生超冷中子的新概念。UCN广泛应用于基本粒子物理学和基本相互作用,并有可能用于凝聚态的研究。然而,这些研究大多受到可用的UCN密度和通量的限制。增加它们的方法之一是在脉冲中子源中使用峰值通量,其数量级大于平均值。在这里,提出了一个UCN源的概念,它允许实现这个想法。我们建议在位于中子源中的转换器中产生非常冷的中子(VCN),通过减速磁阱或材料阱将其提取并减速为UCN。如本文所示,对于脉冲中子源和连续中子源,该方法可以提供高的VCN到UCN的转换效率,同时在相空间中具有低的密度损失。更详细的计算和具体技术设计的建议将在未来的出版物中制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Production of ultracold neutrons in a decelerating trap
This note proposes a new concept for the production of ultracold neutrons (UCNs) in a decelerating trap. UCNs are widely used in the physics of elementary particles and fundamental interactions, and can potentially be used in studies of condensed matter. However, most of these studies are limited by the available UCN densities and fluxes. One of the ways to increase them is to use peak fluxes in pulsed neutron sources, orders of magnitude larger than the mean values. Here, a concept of UCN sources is proposed, which allows to implement this idea. We propose to produce very cold neutrons (VCNs) in converters located in a neutron source, extract and slow them down to UCNs by a decelerating magnetic or material trap. As shown in this paper, for both pulsed and continuous neutron sources, this method could provide a high conversion efficiency of VCNs to UCNs with low losses of density in the phase space. More detailed calculations and the proposals for concrete technical designs are going to be developed in future publications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neutron Research
Journal of Neutron Research NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信