衡量最高法院意见的发布内容

IF 0.8 Q2 LAW
Douglas Rice
{"title":"衡量最高法院意见的发布内容","authors":"Douglas Rice","doi":"10.1086/701130","DOIUrl":null,"url":null,"abstract":"The opinions of the US Supreme Court are central to volumes of research on law, courts, and politics. To understand these complex and often-lengthy documents, scholars frequently rely on dichotomous indicators of opinion content. While sometimes appropriate, for many research settings this simplification of opinion content systematically omits important information. Using all US Supreme Court opinions from 1803 to 2010 in association with structural topic models, I instead demonstrate the value of representing the Court’s attention in opinions in terms of topic proportions.","PeriodicalId":44478,"journal":{"name":"Journal of Law and Courts","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/701130","citationCount":"10","resultStr":"{\"title\":\"Measuring the Issue Content of Supreme Court Opinions\",\"authors\":\"Douglas Rice\",\"doi\":\"10.1086/701130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The opinions of the US Supreme Court are central to volumes of research on law, courts, and politics. To understand these complex and often-lengthy documents, scholars frequently rely on dichotomous indicators of opinion content. While sometimes appropriate, for many research settings this simplification of opinion content systematically omits important information. Using all US Supreme Court opinions from 1803 to 2010 in association with structural topic models, I instead demonstrate the value of representing the Court’s attention in opinions in terms of topic proportions.\",\"PeriodicalId\":44478,\"journal\":{\"name\":\"Journal of Law and Courts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1086/701130\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Law and Courts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1086/701130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LAW\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Law and Courts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/701130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LAW","Score":null,"Total":0}
引用次数: 10

摘要

美国最高法院的意见是大量法律、法院和政治研究的核心。为了理解这些复杂且往往冗长的文件,学者们经常依赖于意见内容的二分法指标。虽然有时是适当的,但对于许多研究环境来说,这种意见内容的简化系统地忽略了重要信息。使用1803年至2010年美国最高法院的所有意见,结合结构主题模型,我反而证明了在意见中以主题比例代表法院注意力的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring the Issue Content of Supreme Court Opinions
The opinions of the US Supreme Court are central to volumes of research on law, courts, and politics. To understand these complex and often-lengthy documents, scholars frequently rely on dichotomous indicators of opinion content. While sometimes appropriate, for many research settings this simplification of opinion content systematically omits important information. Using all US Supreme Court opinions from 1803 to 2010 in association with structural topic models, I instead demonstrate the value of representing the Court’s attention in opinions in terms of topic proportions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信