翅片穿孔和材料类型对自然对流下散热器热性能的影响

M. A. Hussein, Mohammed I Makhoul
{"title":"翅片穿孔和材料类型对自然对流下散热器热性能的影响","authors":"M. A. Hussein, Mohammed I Makhoul","doi":"10.32852/IQJFMME.V18I3.179","DOIUrl":null,"url":null,"abstract":"An experimental study was done to investigate the effect of fin geometrymodification and material type on heat dissipation from a heat sink under natural convection.v-corrugated solid fin and v-corrugated perforated fin were designed for this purpose.Aluminum and Copper metals were selected in designing the fins because their wideapplication in cooling and heating equipment. Three different voltages 110, 150 and 200 Vsupplied to the heat sink to study their effects on the fins performance. Each experimentrepeats two times to reduce the error and the data recorded after reaching the steady stateconditions. The utilization of solid and perforated v-corrugated fins is compared. The resultsshowed that perforated fins dissipated heat more than corresponding solid by 15.4, 34 and32% for aluminum, and 2.7, 2.1 and 4.3% for copper fin in the three voltages. Also, theresults indicated that the heat loss by solid copper fin is greater by 56, 72 and 92% thancorresponding solid aluminum fin and for perforated fin case by 38, 31.7 and 51.9 % at110,150 and 200 V respectively.","PeriodicalId":31812,"journal":{"name":"Iraqi Journal for Mechanical and Materials Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"THE EFFECT OF FINS PERFORATION AND MATERIAL TYPE ON THERMAL PERFORMANCE OF A HEAT SINK UNDER NATURAL CONVECTION\",\"authors\":\"M. A. Hussein, Mohammed I Makhoul\",\"doi\":\"10.32852/IQJFMME.V18I3.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental study was done to investigate the effect of fin geometrymodification and material type on heat dissipation from a heat sink under natural convection.v-corrugated solid fin and v-corrugated perforated fin were designed for this purpose.Aluminum and Copper metals were selected in designing the fins because their wideapplication in cooling and heating equipment. Three different voltages 110, 150 and 200 Vsupplied to the heat sink to study their effects on the fins performance. Each experimentrepeats two times to reduce the error and the data recorded after reaching the steady stateconditions. The utilization of solid and perforated v-corrugated fins is compared. The resultsshowed that perforated fins dissipated heat more than corresponding solid by 15.4, 34 and32% for aluminum, and 2.7, 2.1 and 4.3% for copper fin in the three voltages. Also, theresults indicated that the heat loss by solid copper fin is greater by 56, 72 and 92% thancorresponding solid aluminum fin and for perforated fin case by 38, 31.7 and 51.9 % at110,150 and 200 V respectively.\",\"PeriodicalId\":31812,\"journal\":{\"name\":\"Iraqi Journal for Mechanical and Materials Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal for Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32852/IQJFMME.V18I3.179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32852/IQJFMME.V18I3.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了自然对流条件下散热器翅片几何形状和材料类型对散热性能的影响。为此设计了v型波纹实体翅片和v型波纹穿孔翅片。由于铝和铜金属在冷却和加热设备中的广泛应用,因此在设计翅片时选择了铝和铜金属。为散热片提供110v、150v和200v三种不同电压,研究其对散热片性能的影响。每次实验重复两次,以减少误差和达到稳态条件后记录的数据。比较了固体v型波纹翅片和穿孔v型波纹翅片的利用情况。结果表明:在三种电压下,铝翅片比固体翅片散热量高15.4%、34%和32%,铜翅片比固体翅片散热量高2.7、2.1和4.3%。结果表明,在110、150和200 V电压下,纯铜翅片的热损失分别比纯铝翅片高56%、72%和92%,多孔翅片的热损失分别比纯铝翅片高38%、31.7%和51.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE EFFECT OF FINS PERFORATION AND MATERIAL TYPE ON THERMAL PERFORMANCE OF A HEAT SINK UNDER NATURAL CONVECTION
An experimental study was done to investigate the effect of fin geometrymodification and material type on heat dissipation from a heat sink under natural convection.v-corrugated solid fin and v-corrugated perforated fin were designed for this purpose.Aluminum and Copper metals were selected in designing the fins because their wideapplication in cooling and heating equipment. Three different voltages 110, 150 and 200 Vsupplied to the heat sink to study their effects on the fins performance. Each experimentrepeats two times to reduce the error and the data recorded after reaching the steady stateconditions. The utilization of solid and perforated v-corrugated fins is compared. The resultsshowed that perforated fins dissipated heat more than corresponding solid by 15.4, 34 and32% for aluminum, and 2.7, 2.1 and 4.3% for copper fin in the three voltages. Also, theresults indicated that the heat loss by solid copper fin is greater by 56, 72 and 92% thancorresponding solid aluminum fin and for perforated fin case by 38, 31.7 and 51.9 % at110,150 and 200 V respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信