一种基于单词注意力网络的主题检测方法

Zhengwen Xie
{"title":"一种基于单词注意力网络的主题检测方法","authors":"Zhengwen Xie","doi":"10.2478/jdis-2021-0032","DOIUrl":null,"url":null,"abstract":"Abstract Purpose We proposed a method to represent scientific papers by a complex network, which combines the approaches of neural and complex networks. Design/methodology/approach Its novelty is representing a paper by a word branch, which carries the sequential structure of words in sentences. The branches are generated by the attention mechanism in deep learning models. We connected those branches at the positions of their common words to generate networks, called word-attention networks, and then detect their communities, defined as topics. Findings Those detected topics can carry the sequential structure of words in sentences, represent the intra- and inter-sentential dependencies among words, and reveal the roles of words playing in them by network indexes. Research limitations The parameter setting of our method may depend on practical data. Thus it needs human experience to find proper settings. Practical implications Our method is applied to the papers of the PNAS, where the discipline designations provided by authors are used as the golden labels of papers’ topics. Originality/value This empirical study shows that the proposed method outperforms the Latent Dirichlet Allocation and is more stable.","PeriodicalId":92237,"journal":{"name":"Journal of data and information science (Warsaw, Poland)","volume":"6 1","pages":"139 - 163"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Topic Detection Method Based on Word-attention Networks\",\"authors\":\"Zhengwen Xie\",\"doi\":\"10.2478/jdis-2021-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Purpose We proposed a method to represent scientific papers by a complex network, which combines the approaches of neural and complex networks. Design/methodology/approach Its novelty is representing a paper by a word branch, which carries the sequential structure of words in sentences. The branches are generated by the attention mechanism in deep learning models. We connected those branches at the positions of their common words to generate networks, called word-attention networks, and then detect their communities, defined as topics. Findings Those detected topics can carry the sequential structure of words in sentences, represent the intra- and inter-sentential dependencies among words, and reveal the roles of words playing in them by network indexes. Research limitations The parameter setting of our method may depend on practical data. Thus it needs human experience to find proper settings. Practical implications Our method is applied to the papers of the PNAS, where the discipline designations provided by authors are used as the golden labels of papers’ topics. Originality/value This empirical study shows that the proposed method outperforms the Latent Dirichlet Allocation and is more stable.\",\"PeriodicalId\":92237,\"journal\":{\"name\":\"Journal of data and information science (Warsaw, Poland)\",\"volume\":\"6 1\",\"pages\":\"139 - 163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data and information science (Warsaw, Poland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jdis-2021-0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data and information science (Warsaw, Poland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jdis-2021-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要目的我们提出了一种用复杂网络表示科学论文的方法,该方法结合了神经网络和复杂网络的方法。设计/方法论/方法论它的新颖之处在于用一个词支来表示一篇论文,这个词支承载着句子中单词的顺序结构。分支是由深度学习模型中的注意力机制生成的。我们在这些分支的常用词位置连接它们,以生成网络,称为单词注意力网络,然后检测它们的社区,定义为主题。发现这些检测到的主题可以携带句子中单词的顺序结构,表示单词之间的句内和句间依赖关系,并通过网络索引揭示单词在其中的作用。研究局限性我们方法的参数设置可能取决于实际数据。因此,它需要人类的经验来找到合适的环境。实际意义我们的方法应用于PNAS的论文,作者提供的学科名称被用作论文主题的黄金标签。原创性/价值这项实证研究表明,所提出的方法优于潜在狄利克雷分配,并且更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Topic Detection Method Based on Word-attention Networks
Abstract Purpose We proposed a method to represent scientific papers by a complex network, which combines the approaches of neural and complex networks. Design/methodology/approach Its novelty is representing a paper by a word branch, which carries the sequential structure of words in sentences. The branches are generated by the attention mechanism in deep learning models. We connected those branches at the positions of their common words to generate networks, called word-attention networks, and then detect their communities, defined as topics. Findings Those detected topics can carry the sequential structure of words in sentences, represent the intra- and inter-sentential dependencies among words, and reveal the roles of words playing in them by network indexes. Research limitations The parameter setting of our method may depend on practical data. Thus it needs human experience to find proper settings. Practical implications Our method is applied to the papers of the PNAS, where the discipline designations provided by authors are used as the golden labels of papers’ topics. Originality/value This empirical study shows that the proposed method outperforms the Latent Dirichlet Allocation and is more stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信