{"title":"具有孤立奇点的奇异厄米度量","authors":"Takahiro Inayama","doi":"10.1017/nmj.2022.16","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the coherence of a higher rank analogue of a multiplier ideal sheaf. Key tools of the study are Hörmander’s \n$L^2$\n -estimate and a singular version of a Demailly–Skoda-type result.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SINGULAR HERMITIAN METRICS WITH ISOLATED SINGULARITIES\",\"authors\":\"Takahiro Inayama\",\"doi\":\"10.1017/nmj.2022.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the coherence of a higher rank analogue of a multiplier ideal sheaf. Key tools of the study are Hörmander’s \\n$L^2$\\n -estimate and a singular version of a Demailly–Skoda-type result.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SINGULAR HERMITIAN METRICS WITH ISOLATED SINGULARITIES
Abstract In this paper, we study the coherence of a higher rank analogue of a multiplier ideal sheaf. Key tools of the study are Hörmander’s
$L^2$
-estimate and a singular version of a Demailly–Skoda-type result.