从非紧对称空间到其紧对偶的嵌入

IF 0.5 4区 数学 Q3 MATHEMATICS
Yunxia Chen, Yongdong Huang, N. Leung
{"title":"从非紧对称空间到其紧对偶的嵌入","authors":"Yunxia Chen, Yongdong Huang, N. Leung","doi":"10.4310/AJM.2020.V24.N5.A3","DOIUrl":null,"url":null,"abstract":"Every compact symmetric space $M$ admits a dual noncompact symmetric space $\\check{M}$. When $M$ is a generalized Grassmannian, we can view $\\check{M}$ as a open submanifold of it consisting of space-like subspaces \\cite{HL}. Motivated from this, we study the embeddings from noncompact symmetric spaces to their compact duals, including space-like embedding for generalized Grassmannians, Borel embedding for Hermitian symmetric spaces and the generalized embedding for symmetric R-spaces. We will compare these embeddings and describe their images using cut loci.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Embeddings from noncompact symmetric spaces to their compact duals\",\"authors\":\"Yunxia Chen, Yongdong Huang, N. Leung\",\"doi\":\"10.4310/AJM.2020.V24.N5.A3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every compact symmetric space $M$ admits a dual noncompact symmetric space $\\\\check{M}$. When $M$ is a generalized Grassmannian, we can view $\\\\check{M}$ as a open submanifold of it consisting of space-like subspaces \\\\cite{HL}. Motivated from this, we study the embeddings from noncompact symmetric spaces to their compact duals, including space-like embedding for generalized Grassmannians, Borel embedding for Hermitian symmetric spaces and the generalized embedding for symmetric R-spaces. We will compare these embeddings and describe their images using cut loci.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/AJM.2020.V24.N5.A3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/AJM.2020.V24.N5.A3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

每个紧致对称空间$M$都允许一个对偶非紧致对称空间$\check{M}$。当$M$是广义Grassmanian时,我们可以将$\check{M}$看作它的一个开子流形,它由类空间的子空间\cite{HL}组成。基于此,我们研究了从非紧对称空间到其紧对偶的嵌入,包括广义Grassmann的类空间嵌入、Hermitian对称空间的Borel嵌入和对称R-空间的广义嵌入。我们将比较这些嵌入,并使用切割轨迹描述它们的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embeddings from noncompact symmetric spaces to their compact duals
Every compact symmetric space $M$ admits a dual noncompact symmetric space $\check{M}$. When $M$ is a generalized Grassmannian, we can view $\check{M}$ as a open submanifold of it consisting of space-like subspaces \cite{HL}. Motivated from this, we study the embeddings from noncompact symmetric spaces to their compact duals, including space-like embedding for generalized Grassmannians, Borel embedding for Hermitian symmetric spaces and the generalized embedding for symmetric R-spaces. We will compare these embeddings and describe their images using cut loci.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信