随机有向二部图的沙堆群的秩

Pub Date : 2023-04-28 DOI:10.1007/s00026-023-00637-3
Atal Bhargava, Jack DePascale, Jake Koenig
{"title":"随机有向二部图的沙堆群的秩","authors":"Atal Bhargava,&nbsp;Jack DePascale,&nbsp;Jake Koenig","doi":"10.1007/s00026-023-00637-3","DOIUrl":null,"url":null,"abstract":"<div><p>We identify the asymptotic distribution of <i>p</i>-rank of the sandpile group of random directed bipartite graphs which are not too imbalanced. We show this matches exactly with that of the Erdös–Rényi random directed graph model, suggesting that the Sylow <i>p</i>-subgroups of this model may also be Cohen–Lenstra distributed. Our work builds on the results of Koplewitz who studied <i>p</i>-rank distributions for unbalanced random bipartite graphs, and showed that for sufficiently unbalanced graphs, the distribution of <i>p</i>-rank differs from the Cohen–Lenstra distribution. Koplewitz (sandpile groups of random bipartite graphs, https://arxiv.org/abs/1705.07519, 2017) conjectured that for random balanced bipartite graphs, the expected value of <i>p</i>-rank is <i>O</i>(1) for any <i>p</i>. This work proves his conjecture and gives the exact distribution for the subclass of directed graphs.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-023-00637-3.pdf","citationCount":"1","resultStr":"{\"title\":\"The Rank of the Sandpile Group of Random Directed Bipartite Graphs\",\"authors\":\"Atal Bhargava,&nbsp;Jack DePascale,&nbsp;Jake Koenig\",\"doi\":\"10.1007/s00026-023-00637-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We identify the asymptotic distribution of <i>p</i>-rank of the sandpile group of random directed bipartite graphs which are not too imbalanced. We show this matches exactly with that of the Erdös–Rényi random directed graph model, suggesting that the Sylow <i>p</i>-subgroups of this model may also be Cohen–Lenstra distributed. Our work builds on the results of Koplewitz who studied <i>p</i>-rank distributions for unbalanced random bipartite graphs, and showed that for sufficiently unbalanced graphs, the distribution of <i>p</i>-rank differs from the Cohen–Lenstra distribution. Koplewitz (sandpile groups of random bipartite graphs, https://arxiv.org/abs/1705.07519, 2017) conjectured that for random balanced bipartite graphs, the expected value of <i>p</i>-rank is <i>O</i>(1) for any <i>p</i>. This work proves his conjecture and gives the exact distribution for the subclass of directed graphs.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-023-00637-3.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00637-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00637-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了不太不平衡的随机有向二部图的沙堆群的p秩的渐近分布。我们证明了这与Erdös–Rényi随机有向图模型的结果完全匹配,表明该模型的Sylow p-子群也可能是Cohen–Lenstra分布的。我们的工作建立在Koplewitz的结果之上,他研究了不平衡随机二分图的p秩分布,并表明对于足够不平衡的图,p秩的分布不同于Cohen–Lenstra分布。Koplewitz(随机二分图的沙堆群,https://arxiv.org/abs/1705.07519,2017)猜想,对于随机平衡二分图,p秩的期望值对于任何p都是O(1)。这项工作证明了他的猜想,并给出了有向图的子类的精确分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Rank of the Sandpile Group of Random Directed Bipartite Graphs

分享
查看原文
The Rank of the Sandpile Group of Random Directed Bipartite Graphs

We identify the asymptotic distribution of p-rank of the sandpile group of random directed bipartite graphs which are not too imbalanced. We show this matches exactly with that of the Erdös–Rényi random directed graph model, suggesting that the Sylow p-subgroups of this model may also be Cohen–Lenstra distributed. Our work builds on the results of Koplewitz who studied p-rank distributions for unbalanced random bipartite graphs, and showed that for sufficiently unbalanced graphs, the distribution of p-rank differs from the Cohen–Lenstra distribution. Koplewitz (sandpile groups of random bipartite graphs, https://arxiv.org/abs/1705.07519, 2017) conjectured that for random balanced bipartite graphs, the expected value of p-rank is O(1) for any p. This work proves his conjecture and gives the exact distribution for the subclass of directed graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信