用Nyström方法求解线性Fredholm积分微分方程

IF 0.8 Q2 MATHEMATICS
Boutheina Tair, H. Guebbai, S. Segni, M. Ghiat
{"title":"用Nyström方法求解线性Fredholm积分微分方程","authors":"Boutheina Tair, H. Guebbai, S. Segni, M. Ghiat","doi":"10.17512/jamcm.2021.3.05","DOIUrl":null,"url":null,"abstract":". The study of the solution’s existence and uniqueness for the linear integro-differential Fredholm equation and the application of the Nystr ¨ om method to approximate the solution is what we will present in this paper. We use the Neumann theorem to construct a sufficient condition that ensures the solution’s existence and uniqueness of our problem in the Banach space C 1 [ a , b ] . We have applied the Nystr ¨ om method based on the trapezoidal rule to avoid adding other conditions in order to the approximation method’s convergence. The Nystr ¨ om method discretizes the integro-differential equation into solving a linear system. Only with the existence and uniqueness condition, we show the solution’s existence and uniqueness of the linear system and the convergence of the numerical solution to the exact solution in infinite norm sense. We present two theorems to give a good estimate of the error. Also, to show the efficiency and accuracy of the Nystr¨om method, some numerical examples will be provided at the end of this work.","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solving linear Fredholm integro-differential equation by Nyström method\",\"authors\":\"Boutheina Tair, H. Guebbai, S. Segni, M. Ghiat\",\"doi\":\"10.17512/jamcm.2021.3.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The study of the solution’s existence and uniqueness for the linear integro-differential Fredholm equation and the application of the Nystr ¨ om method to approximate the solution is what we will present in this paper. We use the Neumann theorem to construct a sufficient condition that ensures the solution’s existence and uniqueness of our problem in the Banach space C 1 [ a , b ] . We have applied the Nystr ¨ om method based on the trapezoidal rule to avoid adding other conditions in order to the approximation method’s convergence. The Nystr ¨ om method discretizes the integro-differential equation into solving a linear system. Only with the existence and uniqueness condition, we show the solution’s existence and uniqueness of the linear system and the convergence of the numerical solution to the exact solution in infinite norm sense. We present two theorems to give a good estimate of the error. Also, to show the efficiency and accuracy of the Nystr¨om method, some numerical examples will be provided at the end of this work.\",\"PeriodicalId\":43867,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17512/jamcm.2021.3.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2021.3.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文将研究线性积分微分Fredholm方程解的存在性和唯一性,并应用Nystr¨om方法逼近解。我们使用Neumann定理构造了一个充分条件,该条件确保了我们的问题在Banach空间C1[a,b]中的解的存在性和唯一性。我们应用了基于梯形规则的Nystr¨om方法,以避免为了近似方法的收敛而添加其他条件。Nystr¨om方法将积分微分方程离散化为求解线性系统。只有在存在唯一性条件下,我们才证明了线性系统解的存在唯一性,以及数值解在有限范数意义上对精确解的收敛性。我们给出了两个定理来很好地估计误差。此外,为了证明Nystr?om方法的有效性和准确性,本文最后将提供一些数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving linear Fredholm integro-differential equation by Nyström method
. The study of the solution’s existence and uniqueness for the linear integro-differential Fredholm equation and the application of the Nystr ¨ om method to approximate the solution is what we will present in this paper. We use the Neumann theorem to construct a sufficient condition that ensures the solution’s existence and uniqueness of our problem in the Banach space C 1 [ a , b ] . We have applied the Nystr ¨ om method based on the trapezoidal rule to avoid adding other conditions in order to the approximation method’s convergence. The Nystr ¨ om method discretizes the integro-differential equation into solving a linear system. Only with the existence and uniqueness condition, we show the solution’s existence and uniqueness of the linear system and the convergence of the numerical solution to the exact solution in infinite norm sense. We present two theorems to give a good estimate of the error. Also, to show the efficiency and accuracy of the Nystr¨om method, some numerical examples will be provided at the end of this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
30
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信