{"title":"关于Drury-Arveson空间的一类平移不变子空间","authors":"N. Arcozzi, Matteo Levi","doi":"10.1515/conop-2018-0001","DOIUrl":null,"url":null,"abstract":"Abstract In the Drury-Arveson space, we consider the subspace of functions whose Taylor coefficients are supported in a set Y⊂ ℕd with the property that ℕ\\X + ej ⊂ ℕ\\X for all j = 1, . . . , d. This is an easy example of shift-invariant subspace, which can be considered as a RKHS in is own right, with a kernel that can be explicitly calculated for specific choices of X. Every such a space can be seen as an intersection of kernels of Hankel operators with explicit symbols. Finally, this is the right space on which Drury’s inequality can be optimally adapted to a sub-family of the commuting and contractive operators originally considered by Drury.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"5 1","pages":"1 - 8"},"PeriodicalIF":0.3000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2018-0001","citationCount":"4","resultStr":"{\"title\":\"On a class of shift-invariant subspaces of the Drury-Arveson space\",\"authors\":\"N. Arcozzi, Matteo Levi\",\"doi\":\"10.1515/conop-2018-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the Drury-Arveson space, we consider the subspace of functions whose Taylor coefficients are supported in a set Y⊂ ℕd with the property that ℕ\\\\X + ej ⊂ ℕ\\\\X for all j = 1, . . . , d. This is an easy example of shift-invariant subspace, which can be considered as a RKHS in is own right, with a kernel that can be explicitly calculated for specific choices of X. Every such a space can be seen as an intersection of kernels of Hankel operators with explicit symbols. Finally, this is the right space on which Drury’s inequality can be optimally adapted to a sub-family of the commuting and contractive operators originally considered by Drury.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"5 1\",\"pages\":\"1 - 8\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2018-0001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2018-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2018-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a class of shift-invariant subspaces of the Drury-Arveson space
Abstract In the Drury-Arveson space, we consider the subspace of functions whose Taylor coefficients are supported in a set Y⊂ ℕd with the property that ℕ\X + ej ⊂ ℕ\X for all j = 1, . . . , d. This is an easy example of shift-invariant subspace, which can be considered as a RKHS in is own right, with a kernel that can be explicitly calculated for specific choices of X. Every such a space can be seen as an intersection of kernels of Hankel operators with explicit symbols. Finally, this is the right space on which Drury’s inequality can be optimally adapted to a sub-family of the commuting and contractive operators originally considered by Drury.