由非整数基展开引起的分歧集

IF 1.1 4区 数学 Q1 MATHEMATICS
P. Allaart, S. Baker, D. Kong
{"title":"由非整数基展开引起的分歧集","authors":"P. Allaart, S. Baker, D. Kong","doi":"10.4171/jfg/79","DOIUrl":null,"url":null,"abstract":"Given a positive integer $M$ and $q\\in(1,M+1]$, let $\\mathcal U_q$ be the set of $x\\in[0, M/(q-1)]$ having a unique $q$-expansion: there exists a unique sequence $(x_i)=x_1x_2\\ldots$ with each $x_i\\in\\{0,1,\\ldots, M\\}$ such that \n\\[ \nx=\\frac{x_1}{q}+\\frac{x_2}{q^2}+\\frac{x_3}{q^3}+\\cdots. \n\\] \nDenote by $\\mathbf U_q$ the set of corresponding sequences of all points in $\\mathcal U_q$. \nIt is well-known that the function $H: q\\mapsto h(\\mathbf U_q)$ is a Devil's staircase, where $h(\\mathbf U_q)$ denotes the topological entropy of $\\mathbf U_q$. In this paper we {give several characterizations of} the bifurcation set \n\\[ \n\\mathcal B:=\\{q\\in(1,M+1]: H(p)\\ne H(q)\\textrm{ for any }p\\ne q\\}. \n\\] Note that $\\mathcal B$ is contained in the set $\\mathcal{U}^R$ of bases $q\\in(1,M+1]$ such that $1\\in\\mathcal U_q$. By using a transversality technique we also calculate the Hausdorff dimension of the difference $\\mathcal B\\backslash\\mathcal{U}^R$. Interestingly this quantity is always strictly between $0$ and $1$. When $M=1$ the Hausdorff dimension of $\\mathcal B\\backslash\\mathcal{U}^R$ is $\\frac{\\log 2}{3\\log \\lambda^*}\\approx 0.368699$, where $\\lambda^*$ is the unique root in $(1, 2)$ of the equation $x^5-x^4-x^3-2x^2+x+1=0$.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2017-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/jfg/79","citationCount":"12","resultStr":"{\"title\":\"Bifurcation sets arising from non-integer base expansions\",\"authors\":\"P. Allaart, S. Baker, D. Kong\",\"doi\":\"10.4171/jfg/79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a positive integer $M$ and $q\\\\in(1,M+1]$, let $\\\\mathcal U_q$ be the set of $x\\\\in[0, M/(q-1)]$ having a unique $q$-expansion: there exists a unique sequence $(x_i)=x_1x_2\\\\ldots$ with each $x_i\\\\in\\\\{0,1,\\\\ldots, M\\\\}$ such that \\n\\\\[ \\nx=\\\\frac{x_1}{q}+\\\\frac{x_2}{q^2}+\\\\frac{x_3}{q^3}+\\\\cdots. \\n\\\\] \\nDenote by $\\\\mathbf U_q$ the set of corresponding sequences of all points in $\\\\mathcal U_q$. \\nIt is well-known that the function $H: q\\\\mapsto h(\\\\mathbf U_q)$ is a Devil's staircase, where $h(\\\\mathbf U_q)$ denotes the topological entropy of $\\\\mathbf U_q$. In this paper we {give several characterizations of} the bifurcation set \\n\\\\[ \\n\\\\mathcal B:=\\\\{q\\\\in(1,M+1]: H(p)\\\\ne H(q)\\\\textrm{ for any }p\\\\ne q\\\\}. \\n\\\\] Note that $\\\\mathcal B$ is contained in the set $\\\\mathcal{U}^R$ of bases $q\\\\in(1,M+1]$ such that $1\\\\in\\\\mathcal U_q$. By using a transversality technique we also calculate the Hausdorff dimension of the difference $\\\\mathcal B\\\\backslash\\\\mathcal{U}^R$. Interestingly this quantity is always strictly between $0$ and $1$. When $M=1$ the Hausdorff dimension of $\\\\mathcal B\\\\backslash\\\\mathcal{U}^R$ is $\\\\frac{\\\\log 2}{3\\\\log \\\\lambda^*}\\\\approx 0.368699$, where $\\\\lambda^*$ is the unique root in $(1, 2)$ of the equation $x^5-x^4-x^3-2x^2+x+1=0$.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/jfg/79\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/79\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/79","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

给定一个正整数$M$和$q\in(1,M+1]$,设$\mathcal U_q$是[0,M/(q-1)]$中的$x\in的集合,具有唯一的$q$-展开式:存在一个唯一序列$(x_i)=x_1x2\ldots$,每个$x_i\in \{0,1,\ldots,M\}$,使得\[x=\frac{x_1}bf U_ q$中所有点的对应序列的集合。众所周知,函数$H:q\mapsto H(\mathbf U_q)$是魔鬼楼梯,其中$H(\math bf U_q)$表示$\mathbfU_q$的拓扑熵。在本文中,我们{给出了}分支集{[\mathcal B:=\{q\In(1,M+1]:H(p)\ne H(q)\textrm{对于任何}p\ne q\}的几个特征注意$\mathcal B$包含在基$q\in(1,M+1]$的集合$\mathical{U}^R$中,使得$1\in\mathcal U_q$。通过使用横截性技术,我们还计算差值$\mathcalB\反斜杠\mathcal{U}^R$的Hausdorff维数。有趣的是,这个量总是严格地在$0$和$1$之间。当$M=1$时,$\mathal B\反斜线\mathcal{U}的Hausdoff维数^R$是$\frac{\log 2}{3\log\lambda ^*}\约0.368699$,其中$\lambda ^*$是方程$x^5-x^4-x^3-2x^2+x+1=0$的$(1,2)$中的唯一根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation sets arising from non-integer base expansions
Given a positive integer $M$ and $q\in(1,M+1]$, let $\mathcal U_q$ be the set of $x\in[0, M/(q-1)]$ having a unique $q$-expansion: there exists a unique sequence $(x_i)=x_1x_2\ldots$ with each $x_i\in\{0,1,\ldots, M\}$ such that \[ x=\frac{x_1}{q}+\frac{x_2}{q^2}+\frac{x_3}{q^3}+\cdots. \] Denote by $\mathbf U_q$ the set of corresponding sequences of all points in $\mathcal U_q$. It is well-known that the function $H: q\mapsto h(\mathbf U_q)$ is a Devil's staircase, where $h(\mathbf U_q)$ denotes the topological entropy of $\mathbf U_q$. In this paper we {give several characterizations of} the bifurcation set \[ \mathcal B:=\{q\in(1,M+1]: H(p)\ne H(q)\textrm{ for any }p\ne q\}. \] Note that $\mathcal B$ is contained in the set $\mathcal{U}^R$ of bases $q\in(1,M+1]$ such that $1\in\mathcal U_q$. By using a transversality technique we also calculate the Hausdorff dimension of the difference $\mathcal B\backslash\mathcal{U}^R$. Interestingly this quantity is always strictly between $0$ and $1$. When $M=1$ the Hausdorff dimension of $\mathcal B\backslash\mathcal{U}^R$ is $\frac{\log 2}{3\log \lambda^*}\approx 0.368699$, where $\lambda^*$ is the unique root in $(1, 2)$ of the equation $x^5-x^4-x^3-2x^2+x+1=0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信