由非整数基展开引起的分歧集

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
P. Allaart, S. Baker, D. Kong
{"title":"由非整数基展开引起的分歧集","authors":"P. Allaart, S. Baker, D. Kong","doi":"10.4171/jfg/79","DOIUrl":null,"url":null,"abstract":"Given a positive integer $M$ and $q\\in(1,M+1]$, let $\\mathcal U_q$ be the set of $x\\in[0, M/(q-1)]$ having a unique $q$-expansion: there exists a unique sequence $(x_i)=x_1x_2\\ldots$ with each $x_i\\in\\{0,1,\\ldots, M\\}$ such that \n\\[ \nx=\\frac{x_1}{q}+\\frac{x_2}{q^2}+\\frac{x_3}{q^3}+\\cdots. \n\\] \nDenote by $\\mathbf U_q$ the set of corresponding sequences of all points in $\\mathcal U_q$. \nIt is well-known that the function $H: q\\mapsto h(\\mathbf U_q)$ is a Devil's staircase, where $h(\\mathbf U_q)$ denotes the topological entropy of $\\mathbf U_q$. In this paper we {give several characterizations of} the bifurcation set \n\\[ \n\\mathcal B:=\\{q\\in(1,M+1]: H(p)\\ne H(q)\\textrm{ for any }p\\ne q\\}. \n\\] Note that $\\mathcal B$ is contained in the set $\\mathcal{U}^R$ of bases $q\\in(1,M+1]$ such that $1\\in\\mathcal U_q$. By using a transversality technique we also calculate the Hausdorff dimension of the difference $\\mathcal B\\backslash\\mathcal{U}^R$. Interestingly this quantity is always strictly between $0$ and $1$. When $M=1$ the Hausdorff dimension of $\\mathcal B\\backslash\\mathcal{U}^R$ is $\\frac{\\log 2}{3\\log \\lambda^*}\\approx 0.368699$, where $\\lambda^*$ is the unique root in $(1, 2)$ of the equation $x^5-x^4-x^3-2x^2+x+1=0$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/jfg/79","citationCount":"12","resultStr":"{\"title\":\"Bifurcation sets arising from non-integer base expansions\",\"authors\":\"P. Allaart, S. Baker, D. Kong\",\"doi\":\"10.4171/jfg/79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a positive integer $M$ and $q\\\\in(1,M+1]$, let $\\\\mathcal U_q$ be the set of $x\\\\in[0, M/(q-1)]$ having a unique $q$-expansion: there exists a unique sequence $(x_i)=x_1x_2\\\\ldots$ with each $x_i\\\\in\\\\{0,1,\\\\ldots, M\\\\}$ such that \\n\\\\[ \\nx=\\\\frac{x_1}{q}+\\\\frac{x_2}{q^2}+\\\\frac{x_3}{q^3}+\\\\cdots. \\n\\\\] \\nDenote by $\\\\mathbf U_q$ the set of corresponding sequences of all points in $\\\\mathcal U_q$. \\nIt is well-known that the function $H: q\\\\mapsto h(\\\\mathbf U_q)$ is a Devil's staircase, where $h(\\\\mathbf U_q)$ denotes the topological entropy of $\\\\mathbf U_q$. In this paper we {give several characterizations of} the bifurcation set \\n\\\\[ \\n\\\\mathcal B:=\\\\{q\\\\in(1,M+1]: H(p)\\\\ne H(q)\\\\textrm{ for any }p\\\\ne q\\\\}. \\n\\\\] Note that $\\\\mathcal B$ is contained in the set $\\\\mathcal{U}^R$ of bases $q\\\\in(1,M+1]$ such that $1\\\\in\\\\mathcal U_q$. By using a transversality technique we also calculate the Hausdorff dimension of the difference $\\\\mathcal B\\\\backslash\\\\mathcal{U}^R$. Interestingly this quantity is always strictly between $0$ and $1$. When $M=1$ the Hausdorff dimension of $\\\\mathcal B\\\\backslash\\\\mathcal{U}^R$ is $\\\\frac{\\\\log 2}{3\\\\log \\\\lambda^*}\\\\approx 0.368699$, where $\\\\lambda^*$ is the unique root in $(1, 2)$ of the equation $x^5-x^4-x^3-2x^2+x+1=0$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/jfg/79\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/79\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/79","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

给定一个正整数$M$和$q\in(1,M+1]$,设$\mathcal U_q$是[0,M/(q-1)]$中的$x\in的集合,具有唯一的$q$-展开式:存在一个唯一序列$(x_i)=x_1x2\ldots$,每个$x_i\in \{0,1,\ldots,M\}$,使得\[x=\frac{x_1}bf U_ q$中所有点的对应序列的集合。众所周知,函数$H:q\mapsto H(\mathbf U_q)$是魔鬼楼梯,其中$H(\math bf U_q)$表示$\mathbfU_q$的拓扑熵。在本文中,我们{给出了}分支集{[\mathcal B:=\{q\In(1,M+1]:H(p)\ne H(q)\textrm{对于任何}p\ne q\}的几个特征注意$\mathcal B$包含在基$q\in(1,M+1]$的集合$\mathical{U}^R$中,使得$1\in\mathcal U_q$。通过使用横截性技术,我们还计算差值$\mathcalB\反斜杠\mathcal{U}^R$的Hausdorff维数。有趣的是,这个量总是严格地在$0$和$1$之间。当$M=1$时,$\mathal B\反斜线\mathcal{U}的Hausdoff维数^R$是$\frac{\log 2}{3\log\lambda ^*}\约0.368699$,其中$\lambda ^*$是方程$x^5-x^4-x^3-2x^2+x+1=0$的$(1,2)$中的唯一根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation sets arising from non-integer base expansions
Given a positive integer $M$ and $q\in(1,M+1]$, let $\mathcal U_q$ be the set of $x\in[0, M/(q-1)]$ having a unique $q$-expansion: there exists a unique sequence $(x_i)=x_1x_2\ldots$ with each $x_i\in\{0,1,\ldots, M\}$ such that \[ x=\frac{x_1}{q}+\frac{x_2}{q^2}+\frac{x_3}{q^3}+\cdots. \] Denote by $\mathbf U_q$ the set of corresponding sequences of all points in $\mathcal U_q$. It is well-known that the function $H: q\mapsto h(\mathbf U_q)$ is a Devil's staircase, where $h(\mathbf U_q)$ denotes the topological entropy of $\mathbf U_q$. In this paper we {give several characterizations of} the bifurcation set \[ \mathcal B:=\{q\in(1,M+1]: H(p)\ne H(q)\textrm{ for any }p\ne q\}. \] Note that $\mathcal B$ is contained in the set $\mathcal{U}^R$ of bases $q\in(1,M+1]$ such that $1\in\mathcal U_q$. By using a transversality technique we also calculate the Hausdorff dimension of the difference $\mathcal B\backslash\mathcal{U}^R$. Interestingly this quantity is always strictly between $0$ and $1$. When $M=1$ the Hausdorff dimension of $\mathcal B\backslash\mathcal{U}^R$ is $\frac{\log 2}{3\log \lambda^*}\approx 0.368699$, where $\lambda^*$ is the unique root in $(1, 2)$ of the equation $x^5-x^4-x^3-2x^2+x+1=0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信