{"title":"明渠水流中顺行突发性植被的阻力系数","authors":"A. D’Ippolito, F. Calomino, G. Alfonsi, A. Lauria","doi":"10.1080/15715124.2021.1961796","DOIUrl":null,"url":null,"abstract":"ABSTRACT Along the banks of rivers, trees and bushes are often planted in a single line. In the case of trees, the trunks are simulated in hydraulic laboratories by a set of cylinders, and the drag coefficient can be estimated with the use of various different methodologies, including by direct measurement, using the momentum equation, equating turbulence intensity and drag force, numerical modeling, and genetic programming. However, for the sake of simplicity, many equations have been proposed in the scientific literature that allows its immediate estimation. Some of these equations are used in this work to verify their ability to reproduce experimental data obtained for in-line cylinders by Mulahasan and Stoesser ([2017]. Flow resistance of in-line vegetation in open channel flow. International Journal of River Basin Management, 15(3), 329–334. https://doi.org/10.1080/15715124.2017.1307847), who obtained the drag force by applying the momentum equation. Several statistical descriptors have been used for this purpose. We found that the equations derived from staggered and random arrangements generally overestimate by a large amount the CD values; instead, a few relationships and in particular one derived from a squared arrangement provide much better results.","PeriodicalId":14344,"journal":{"name":"International Journal of River Basin Management","volume":"21 1","pages":"253 - 263"},"PeriodicalIF":2.2000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15715124.2021.1961796","citationCount":"7","resultStr":"{\"title\":\"Drag coefficient of in-line emergent vegetation in open channel flow\",\"authors\":\"A. D’Ippolito, F. Calomino, G. Alfonsi, A. Lauria\",\"doi\":\"10.1080/15715124.2021.1961796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Along the banks of rivers, trees and bushes are often planted in a single line. In the case of trees, the trunks are simulated in hydraulic laboratories by a set of cylinders, and the drag coefficient can be estimated with the use of various different methodologies, including by direct measurement, using the momentum equation, equating turbulence intensity and drag force, numerical modeling, and genetic programming. However, for the sake of simplicity, many equations have been proposed in the scientific literature that allows its immediate estimation. Some of these equations are used in this work to verify their ability to reproduce experimental data obtained for in-line cylinders by Mulahasan and Stoesser ([2017]. Flow resistance of in-line vegetation in open channel flow. International Journal of River Basin Management, 15(3), 329–334. https://doi.org/10.1080/15715124.2017.1307847), who obtained the drag force by applying the momentum equation. Several statistical descriptors have been used for this purpose. We found that the equations derived from staggered and random arrangements generally overestimate by a large amount the CD values; instead, a few relationships and in particular one derived from a squared arrangement provide much better results.\",\"PeriodicalId\":14344,\"journal\":{\"name\":\"International Journal of River Basin Management\",\"volume\":\"21 1\",\"pages\":\"253 - 263\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15715124.2021.1961796\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of River Basin Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15715124.2021.1961796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of River Basin Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15715124.2021.1961796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Drag coefficient of in-line emergent vegetation in open channel flow
ABSTRACT Along the banks of rivers, trees and bushes are often planted in a single line. In the case of trees, the trunks are simulated in hydraulic laboratories by a set of cylinders, and the drag coefficient can be estimated with the use of various different methodologies, including by direct measurement, using the momentum equation, equating turbulence intensity and drag force, numerical modeling, and genetic programming. However, for the sake of simplicity, many equations have been proposed in the scientific literature that allows its immediate estimation. Some of these equations are used in this work to verify their ability to reproduce experimental data obtained for in-line cylinders by Mulahasan and Stoesser ([2017]. Flow resistance of in-line vegetation in open channel flow. International Journal of River Basin Management, 15(3), 329–334. https://doi.org/10.1080/15715124.2017.1307847), who obtained the drag force by applying the momentum equation. Several statistical descriptors have been used for this purpose. We found that the equations derived from staggered and random arrangements generally overestimate by a large amount the CD values; instead, a few relationships and in particular one derived from a squared arrangement provide much better results.
期刊介绍:
include, but are not limited to new developments or applications in the following areas: AREAS OF INTEREST - integrated water resources management - watershed land use planning and management - spatial planning and management of floodplains - flood forecasting and flood risk management - drought forecasting and drought management - floodplain, river and estuarine restoration - climate change impact prediction and planning of remedial measures - management of mountain rivers - water quality management including non point source pollution - operation strategies for engineered river systems - maintenance strategies for river systems and for structures - project-affected-people and stakeholder participation - conservation of natural and cultural heritage