丢番图方程x^2+8∙7^b=y^2r的推广

Q3 Multidisciplinary
S. H. Sapar, Kai Siong Yow
{"title":"丢番图方程x^2+8∙7^b=y^2r的推广","authors":"S. H. Sapar, Kai Siong Yow","doi":"10.22452/mjs.vol40no2.3","DOIUrl":null,"url":null,"abstract":"We investigate the integral solutions to the Diophantine equation where . We first generalise the forms of and that satisfy the equation. We then show the general forms of non-negative integral solutions to the equation under several conditions. We also investigate some special cases in which the integral solutions exist.","PeriodicalId":18094,"journal":{"name":"Malaysian journal of science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GENERALISATION OF THE DIOPHANTINE EQUATION x^2+8∙7^b=y^2r\",\"authors\":\"S. H. Sapar, Kai Siong Yow\",\"doi\":\"10.22452/mjs.vol40no2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the integral solutions to the Diophantine equation where . We first generalise the forms of and that satisfy the equation. We then show the general forms of non-negative integral solutions to the equation under several conditions. We also investigate some special cases in which the integral solutions exist.\",\"PeriodicalId\":18094,\"journal\":{\"name\":\"Malaysian journal of science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian journal of science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22452/mjs.vol40no2.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22452/mjs.vol40no2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了丢番图方程的积分解。我们首先推广了和满足方程的形式。然后,我们给出了在几个条件下方程非负积分解的一般形式。我们还研究了积分解存在的一些特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GENERALISATION OF THE DIOPHANTINE EQUATION x^2+8∙7^b=y^2r
We investigate the integral solutions to the Diophantine equation where . We first generalise the forms of and that satisfy the equation. We then show the general forms of non-negative integral solutions to the equation under several conditions. We also investigate some special cases in which the integral solutions exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Malaysian journal of science
Malaysian journal of science Multidisciplinary-Multidisciplinary
CiteScore
1.10
自引率
0.00%
发文量
36
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信