Farene Loida Alfeche, Victor Barraza, Sergio R. Canoy
{"title":"一些操作下图中顶点的接近中心性","authors":"Farene Loida Alfeche, Victor Barraza, Sergio R. Canoy","doi":"10.29020/nybg.ejpam.v16i3.4848","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the concept of (normalized) closeness centrality of a vertex in a graph and investigate it in some graphs under some operations. Specifically, we derive formulas that compute the closeness centrality of vertices in the shadow graph, complementary prism, edge corona, and disjunction of graphs.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Closeness Centrality of Vertices in Graphs Under Some Operations\",\"authors\":\"Farene Loida Alfeche, Victor Barraza, Sergio R. Canoy\",\"doi\":\"10.29020/nybg.ejpam.v16i3.4848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we revisit the concept of (normalized) closeness centrality of a vertex in a graph and investigate it in some graphs under some operations. Specifically, we derive formulas that compute the closeness centrality of vertices in the shadow graph, complementary prism, edge corona, and disjunction of graphs.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i3.4848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Closeness Centrality of Vertices in Graphs Under Some Operations
In this paper, we revisit the concept of (normalized) closeness centrality of a vertex in a graph and investigate it in some graphs under some operations. Specifically, we derive formulas that compute the closeness centrality of vertices in the shadow graph, complementary prism, edge corona, and disjunction of graphs.