Tate-Shafarevich群的特别大解析阶的椭圆曲线

Pub Date : 2021-03-19 DOI:10.4064/CM8008-9-2020
A. Dkabrowski, L. Szymaszkiewicz
{"title":"Tate-Shafarevich群的特别大解析阶的椭圆曲线","authors":"A. Dkabrowski, L. Szymaszkiewicz","doi":"10.4064/CM8008-9-2020","DOIUrl":null,"url":null,"abstract":"We exhibit $88$ examples of rank zero elliptic curves over the rationals with $|\\sza(E)| > 63408^2$, which was the largest previously known value for any explicit curve. Our record is an elliptic curve $E$ with $|\\sza(E)| = 1029212^2 = 2^4\\cdot 79^2 \\cdot 3257^2$. We can use deep results by Kolyvagin, Kato, Skinner-Urban and Skinner to prove that, in some cases, these orders are the true orders of $\\sza$. For instance, $410536^2$ is the true order of $\\sza(E)$ for $E= E_4(21,-233)$ from the table in section 2.3.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elliptic curves with exceptionally large analytic order of the Tate–Shafarevich groups\",\"authors\":\"A. Dkabrowski, L. Szymaszkiewicz\",\"doi\":\"10.4064/CM8008-9-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit $88$ examples of rank zero elliptic curves over the rationals with $|\\\\sza(E)| > 63408^2$, which was the largest previously known value for any explicit curve. Our record is an elliptic curve $E$ with $|\\\\sza(E)| = 1029212^2 = 2^4\\\\cdot 79^2 \\\\cdot 3257^2$. We can use deep results by Kolyvagin, Kato, Skinner-Urban and Skinner to prove that, in some cases, these orders are the true orders of $\\\\sza$. For instance, $410536^2$ is the true order of $\\\\sza(E)$ for $E= E_4(21,-233)$ from the table in section 2.3.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/CM8008-9-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/CM8008-9-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们展示了$|\sza(E)|>63408^2$的有理数上秩为零的椭圆曲线的$88$的例子,这是以前已知的任何显式曲线的最大值。我们的记录是一条椭圆曲线$E$,$|\sza(E)|=1029212^2=2^4\cdot 79^2 \cdot 3257^2$。我们可以使用Kolyvagin、Kato、Skinner Urban和Skinner的深入结果来证明,在某些情况下,这些订单是$\sza$的真实订单。例如,$410536^2$是第2.3节表格中$E=E_4(21,-233)$的$\sza(E)$的真实顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Elliptic curves with exceptionally large analytic order of the Tate–Shafarevich groups
We exhibit $88$ examples of rank zero elliptic curves over the rationals with $|\sza(E)| > 63408^2$, which was the largest previously known value for any explicit curve. Our record is an elliptic curve $E$ with $|\sza(E)| = 1029212^2 = 2^4\cdot 79^2 \cdot 3257^2$. We can use deep results by Kolyvagin, Kato, Skinner-Urban and Skinner to prove that, in some cases, these orders are the true orders of $\sza$. For instance, $410536^2$ is the true order of $\sza(E)$ for $E= E_4(21,-233)$ from the table in section 2.3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信