{"title":"一个广义的单指标线性阈值模型,用于识别基于多协变量和纵向测量的治疗敏感子集","authors":"Xinyi Ge, Yingwei Peng, Dongsheng Tu","doi":"10.1002/cjs.11737","DOIUrl":null,"url":null,"abstract":"<p>Identification of a subset of patients who may be sensitive to a specific treatment is an important step towards personalized medicine. We consider the case where the effect of a treatment is assessed by longitudinal measurements, which may be continuous or categorical, such as quality of life scores assessed over the duration of a clinical trial. We assume that multiple baseline covariates, such as age and expression levels of genes, are available, and propose a generalized single-index linear threshold model to identify the treatment-sensitive subset and assess the treatment-by-subset interaction after combining these covariates. Because the model involves an indicator function with unknown parameters, conventional procedures are difficult to apply for inferences of the parameters in the model. We define smoothed generalized estimating equations and propose an inference procedure based on these equations with an efficient spectral algorithm to find their solutions. The proposed procedure is evaluated through simulation studies and an application to the analysis of data from a randomized clinical trial in advanced pancreatic cancer.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"51 4","pages":"1171-1189"},"PeriodicalIF":0.8000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized single-index linear threshold model for identifying treatment-sensitive subsets based on multiple covariates and longitudinal measurements\",\"authors\":\"Xinyi Ge, Yingwei Peng, Dongsheng Tu\",\"doi\":\"10.1002/cjs.11737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identification of a subset of patients who may be sensitive to a specific treatment is an important step towards personalized medicine. We consider the case where the effect of a treatment is assessed by longitudinal measurements, which may be continuous or categorical, such as quality of life scores assessed over the duration of a clinical trial. We assume that multiple baseline covariates, such as age and expression levels of genes, are available, and propose a generalized single-index linear threshold model to identify the treatment-sensitive subset and assess the treatment-by-subset interaction after combining these covariates. Because the model involves an indicator function with unknown parameters, conventional procedures are difficult to apply for inferences of the parameters in the model. We define smoothed generalized estimating equations and propose an inference procedure based on these equations with an efficient spectral algorithm to find their solutions. The proposed procedure is evaluated through simulation studies and an application to the analysis of data from a randomized clinical trial in advanced pancreatic cancer.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"51 4\",\"pages\":\"1171-1189\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11737\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11737","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A generalized single-index linear threshold model for identifying treatment-sensitive subsets based on multiple covariates and longitudinal measurements
Identification of a subset of patients who may be sensitive to a specific treatment is an important step towards personalized medicine. We consider the case where the effect of a treatment is assessed by longitudinal measurements, which may be continuous or categorical, such as quality of life scores assessed over the duration of a clinical trial. We assume that multiple baseline covariates, such as age and expression levels of genes, are available, and propose a generalized single-index linear threshold model to identify the treatment-sensitive subset and assess the treatment-by-subset interaction after combining these covariates. Because the model involves an indicator function with unknown parameters, conventional procedures are difficult to apply for inferences of the parameters in the model. We define smoothed generalized estimating equations and propose an inference procedure based on these equations with an efficient spectral algorithm to find their solutions. The proposed procedure is evaluated through simulation studies and an application to the analysis of data from a randomized clinical trial in advanced pancreatic cancer.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.