酶非竞争性抑制产物的数学模型及其应用

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
V. Mai, T. Nhan, Z. Hammouch
{"title":"酶非竞争性抑制产物的数学模型及其应用","authors":"V. Mai, T. Nhan, Z. Hammouch","doi":"10.1088/1402-4896/ac35c6","DOIUrl":null,"url":null,"abstract":"Enzymes are biological catalysts naturally present in living organisms, and they are capable of accelerating biochemical reactions in the metabolism process. Cells use many regulatory mechanisms to regulate the concentrations of cellular metabolites at physiological levels. Enzymatic inhibition is one of the key regulatory mechanisms naturally occurring in cellular metabolism, especially the enzymatic non-competitive inhibition by product. This inhibition process helps the cell regulate enzymatic activities. In this paper, we develop a novel mathematical model describing the enzymatic non-competitive inhibition by product. The model consists of a coupled system of nonlinear ordinary differential equations for the species of interest. Using nondimensionalization analysis, a formula for product formation rate for this mechanism is obtained in a transparent manner. Further analysis for this formula yields qualitative insights into the maximal reaction velocity and apparent Michaelis-Menten constant. Asymptotic solutions of the model are carefully given by using the homotopy perturbation analysis. A good agreement between the asymptotic solutions and numerical solutions are found. In addition, a Sobol global sensitivity analysis is implemented to help identify the key mechanisms of the enzyme activities. The results of this analysis show that the rate of product formation is relatively sensitive to the following factors: the catalytic rate of the enzyme, the rates of binding/unbinding of the product to/from the enzyme/enzyme complex. The numerical simulations provide insights into how variations in the model parameters affect the model output. Finally, an application of the model to the phosphorylation of glucose by mutant-hexokinase I enzyme is briefly discussed.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A mathematical model of enzymatic non-competitive inhibition by product and its applications\",\"authors\":\"V. Mai, T. Nhan, Z. Hammouch\",\"doi\":\"10.1088/1402-4896/ac35c6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enzymes are biological catalysts naturally present in living organisms, and they are capable of accelerating biochemical reactions in the metabolism process. Cells use many regulatory mechanisms to regulate the concentrations of cellular metabolites at physiological levels. Enzymatic inhibition is one of the key regulatory mechanisms naturally occurring in cellular metabolism, especially the enzymatic non-competitive inhibition by product. This inhibition process helps the cell regulate enzymatic activities. In this paper, we develop a novel mathematical model describing the enzymatic non-competitive inhibition by product. The model consists of a coupled system of nonlinear ordinary differential equations for the species of interest. Using nondimensionalization analysis, a formula for product formation rate for this mechanism is obtained in a transparent manner. Further analysis for this formula yields qualitative insights into the maximal reaction velocity and apparent Michaelis-Menten constant. Asymptotic solutions of the model are carefully given by using the homotopy perturbation analysis. A good agreement between the asymptotic solutions and numerical solutions are found. In addition, a Sobol global sensitivity analysis is implemented to help identify the key mechanisms of the enzyme activities. The results of this analysis show that the rate of product formation is relatively sensitive to the following factors: the catalytic rate of the enzyme, the rates of binding/unbinding of the product to/from the enzyme/enzyme complex. The numerical simulations provide insights into how variations in the model parameters affect the model output. Finally, an application of the model to the phosphorylation of glucose by mutant-hexokinase I enzyme is briefly discussed.\",\"PeriodicalId\":20067,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ac35c6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ac35c6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

酶是生物体内天然存在的生物催化剂,能够加速代谢过程中的生化反应。细胞利用多种调节机制在生理水平上调节细胞代谢物的浓度。酶促抑制是细胞代谢过程中自然发生的重要调控机制之一,尤其是酶促非竞争性抑制副产物。这种抑制过程有助于细胞调节酶的活性。在本文中,我们建立了一个新的数学模型来描述酶的非竞争性抑制副产物。该模型由一个非线性常微分方程的耦合系统组成。通过无量纲化分析,得到了该机理的产物生成速率公式。对该公式的进一步分析可以定性地了解最大反应速度和表观米切里斯-门腾常数。利用同伦摄动分析,给出了模型的渐近解。结果表明,渐近解与数值解具有较好的一致性。此外,Sobol全局敏感性分析被实施,以帮助确定酶活性的关键机制。分析结果表明,产物的形成速率对以下因素相对敏感:酶的催化速率,产物与酶/酶复合物的结合/解结合速率。数值模拟提供了对模型参数变化如何影响模型输出的见解。最后,简要讨论了该模型在突变己糖激酶I酶磷酸化葡萄糖中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mathematical model of enzymatic non-competitive inhibition by product and its applications
Enzymes are biological catalysts naturally present in living organisms, and they are capable of accelerating biochemical reactions in the metabolism process. Cells use many regulatory mechanisms to regulate the concentrations of cellular metabolites at physiological levels. Enzymatic inhibition is one of the key regulatory mechanisms naturally occurring in cellular metabolism, especially the enzymatic non-competitive inhibition by product. This inhibition process helps the cell regulate enzymatic activities. In this paper, we develop a novel mathematical model describing the enzymatic non-competitive inhibition by product. The model consists of a coupled system of nonlinear ordinary differential equations for the species of interest. Using nondimensionalization analysis, a formula for product formation rate for this mechanism is obtained in a transparent manner. Further analysis for this formula yields qualitative insights into the maximal reaction velocity and apparent Michaelis-Menten constant. Asymptotic solutions of the model are carefully given by using the homotopy perturbation analysis. A good agreement between the asymptotic solutions and numerical solutions are found. In addition, a Sobol global sensitivity analysis is implemented to help identify the key mechanisms of the enzyme activities. The results of this analysis show that the rate of product formation is relatively sensitive to the following factors: the catalytic rate of the enzyme, the rates of binding/unbinding of the product to/from the enzyme/enzyme complex. The numerical simulations provide insights into how variations in the model parameters affect the model output. Finally, an application of the model to the phosphorylation of glucose by mutant-hexokinase I enzyme is briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Scripta
Physica Scripta 物理-物理:综合
CiteScore
3.70
自引率
3.40%
发文量
782
审稿时长
4.5 months
期刊介绍: Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed: -Atomic, molecular and optical physics- Plasma physics- Condensed matter physics- Mathematical physics- Astrophysics- High energy physics- Nuclear physics- Nonlinear physics. The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信