重力旋涡水轮机转轮型线优化

Q2 Computer Science
R. A. Subekti, S. Wijaya, A. Sudarmaji, T. D. Atmaja, B. Prawara, Anjar Susatyo, A. Fudholi
{"title":"重力旋涡水轮机转轮型线优化","authors":"R. A. Subekti, S. Wijaya, A. Sudarmaji, T. D. Atmaja, B. Prawara, Anjar Susatyo, A. Fudholi","doi":"10.11591/ijece.v13i5.pp4777-4788","DOIUrl":null,"url":null,"abstract":"This study discusses the numerical optimisation and performance testing of the turbine runner profile for the designed gravitational water vortex turbine. The initial design of the turbine runner is optimised using a surface vorticity algorithm coded in MATLAB to obtain the optimal stagger angle. Design validation is carried out using computational fluid dynamics (CFD) Ansys CFX to determine the performance of the turbine runner with the turbulent shear stress transport model. The CFD analysis shows that by optimising the design, the water turbine efficiency increases by about 2.6%. The prototype of the vortex turbine runner is made using a 3D printing machine with resin material. It is later tested in a laboratory-scale experiment that measures the shaft power, shaft torque and turbine efficiency in correspondence with rotational speeds varying from 150 to 650 rpm. Experiment results validate that the optimised runner has an efficiency of 45.3% or about 14% greater than the initial design runner, which has an efficiency of 39.7%.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Runner profile optimisation of gravitational vortex water turbine\",\"authors\":\"R. A. Subekti, S. Wijaya, A. Sudarmaji, T. D. Atmaja, B. Prawara, Anjar Susatyo, A. Fudholi\",\"doi\":\"10.11591/ijece.v13i5.pp4777-4788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study discusses the numerical optimisation and performance testing of the turbine runner profile for the designed gravitational water vortex turbine. The initial design of the turbine runner is optimised using a surface vorticity algorithm coded in MATLAB to obtain the optimal stagger angle. Design validation is carried out using computational fluid dynamics (CFD) Ansys CFX to determine the performance of the turbine runner with the turbulent shear stress transport model. The CFD analysis shows that by optimising the design, the water turbine efficiency increases by about 2.6%. The prototype of the vortex turbine runner is made using a 3D printing machine with resin material. It is later tested in a laboratory-scale experiment that measures the shaft power, shaft torque and turbine efficiency in correspondence with rotational speeds varying from 150 to 650 rpm. Experiment results validate that the optimised runner has an efficiency of 45.3% or about 14% greater than the initial design runner, which has an efficiency of 39.7%.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp4777-4788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4777-4788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究讨论了设计的重力式水轮机转轮轮廓的数值优化和性能测试。水轮机转轮的初始设计使用MATLAB中编码的表面涡度算法进行优化,以获得最佳交错角。使用计算流体动力学(CFD)Ansys CFX进行设计验证,以确定具有湍流剪切应力传输模型的涡轮机转轮的性能。CFD分析表明,通过优化设计,水轮机的效率提高了约2.6%。涡流涡轮机转轮的原型是使用树脂材料的3D打印机制作的。随后在实验室规模的实验中对其进行了测试,该实验测量了与150至650转/分的转速相对应的轴功率、轴扭矩和涡轮机效率。实验结果证实,优化转轮的效率比初始设计转轮高45.3%或约14%,初始设计转轮的效率为39.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Runner profile optimisation of gravitational vortex water turbine
This study discusses the numerical optimisation and performance testing of the turbine runner profile for the designed gravitational water vortex turbine. The initial design of the turbine runner is optimised using a surface vorticity algorithm coded in MATLAB to obtain the optimal stagger angle. Design validation is carried out using computational fluid dynamics (CFD) Ansys CFX to determine the performance of the turbine runner with the turbulent shear stress transport model. The CFD analysis shows that by optimising the design, the water turbine efficiency increases by about 2.6%. The prototype of the vortex turbine runner is made using a 3D printing machine with resin material. It is later tested in a laboratory-scale experiment that measures the shaft power, shaft torque and turbine efficiency in correspondence with rotational speeds varying from 150 to 650 rpm. Experiment results validate that the optimised runner has an efficiency of 45.3% or about 14% greater than the initial design runner, which has an efficiency of 39.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信