固态电池大规模生产的前景

IF 3.3 Q3 ENERGY & FUELS
K. Hatzell, Yanjie Zheng
{"title":"固态电池大规模生产的前景","authors":"K. Hatzell, Yanjie Zheng","doi":"10.1557/s43581-021-00004-w","DOIUrl":null,"url":null,"abstract":"Widespread deployment of solid state batteries requires facile, high-throughput coating processes. Solid state batteries that utilize energy dense anodes may have similar manufacturing costs as traditional lithium ion batteries. Widespread deployment of renewable energy and electrification of transportation are necessary to decrease greenhouse gas emissions. All solid-state batteries that employ a solid electrolyte, instead of a liquid electrolyte, are well suited for energy dense anodes (e.g., Li metal, Si, etc.) and may be capable of extending the current driving range of an electric vehicles by nearly 2 ×\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\times$$\\end{document}. However, to achieve giga-scale capacities relevant to the EV market large-scale manufacturing approaches are necessary. Solid-state batteries are likely to adopt coating techniques and processing approaches similar to solid oxide fuel cells and conventional battery systems. While control over microstructure, interfaces, and thickness are paramount for achieving long lifetimes, processing speed governs cost and scalability. This perspective highlights the state-of-the-art for solid-state battery manufacturing approaches and highlights the importance of utilizing conventional battery manufacturing approaches for achieving price parity in the near term. Decreasing material costs and improving cell architecture (biploar) may further decrease manufacturing costs.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Prospects on large-scale manufacturing of solid state batteries\",\"authors\":\"K. Hatzell, Yanjie Zheng\",\"doi\":\"10.1557/s43581-021-00004-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Widespread deployment of solid state batteries requires facile, high-throughput coating processes. Solid state batteries that utilize energy dense anodes may have similar manufacturing costs as traditional lithium ion batteries. Widespread deployment of renewable energy and electrification of transportation are necessary to decrease greenhouse gas emissions. All solid-state batteries that employ a solid electrolyte, instead of a liquid electrolyte, are well suited for energy dense anodes (e.g., Li metal, Si, etc.) and may be capable of extending the current driving range of an electric vehicles by nearly 2 ×\\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$$\\\\times$$\\\\end{document}. However, to achieve giga-scale capacities relevant to the EV market large-scale manufacturing approaches are necessary. Solid-state batteries are likely to adopt coating techniques and processing approaches similar to solid oxide fuel cells and conventional battery systems. While control over microstructure, interfaces, and thickness are paramount for achieving long lifetimes, processing speed governs cost and scalability. This perspective highlights the state-of-the-art for solid-state battery manufacturing approaches and highlights the importance of utilizing conventional battery manufacturing approaches for achieving price parity in the near term. Decreasing material costs and improving cell architecture (biploar) may further decrease manufacturing costs.\",\"PeriodicalId\":44802,\"journal\":{\"name\":\"MRS Energy & Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Energy & Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/s43581-021-00004-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-021-00004-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 5

摘要

Widespread deployment of solid state batteries requires facile, high-throughput coating processes. Solid state batteries that utilize energy dense anodes may have similar manufacturing costs as traditional lithium ion batteries. Widespread deployment of renewable energy and electrification of transportation are necessary to decrease greenhouse gas emissions. All solid-state batteries that employ a solid electrolyte, instead of a liquid electrolyte, are well suited for energy dense anodes (e.g., Li metal, Si, etc.) and may be capable of extending the current driving range of an electric vehicles by nearly 2 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}. However, to achieve giga-scale capacities relevant to the EV market large-scale manufacturing approaches are necessary. Solid-state batteries are likely to adopt coating techniques and processing approaches similar to solid oxide fuel cells and conventional battery systems. While control over microstructure, interfaces, and thickness are paramount for achieving long lifetimes, processing speed governs cost and scalability. This perspective highlights the state-of-the-art for solid-state battery manufacturing approaches and highlights the importance of utilizing conventional battery manufacturing approaches for achieving price parity in the near term. Decreasing material costs and improving cell architecture (biploar) may further decrease manufacturing costs.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prospects on large-scale manufacturing of solid state batteries
Widespread deployment of solid state batteries requires facile, high-throughput coating processes. Solid state batteries that utilize energy dense anodes may have similar manufacturing costs as traditional lithium ion batteries. Widespread deployment of renewable energy and electrification of transportation are necessary to decrease greenhouse gas emissions. All solid-state batteries that employ a solid electrolyte, instead of a liquid electrolyte, are well suited for energy dense anodes (e.g., Li metal, Si, etc.) and may be capable of extending the current driving range of an electric vehicles by nearly 2 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}. However, to achieve giga-scale capacities relevant to the EV market large-scale manufacturing approaches are necessary. Solid-state batteries are likely to adopt coating techniques and processing approaches similar to solid oxide fuel cells and conventional battery systems. While control over microstructure, interfaces, and thickness are paramount for achieving long lifetimes, processing speed governs cost and scalability. This perspective highlights the state-of-the-art for solid-state battery manufacturing approaches and highlights the importance of utilizing conventional battery manufacturing approaches for achieving price parity in the near term. Decreasing material costs and improving cell architecture (biploar) may further decrease manufacturing costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信