R. Ramos, M. Scarabello, Wanderson Costa, Pedro Ribeiro de Andrade Neto, A. Soterroni, F. Ramos
{"title":"一种用于缩减多层多约束土地利用模型的数学规划方法","authors":"R. Ramos, M. Scarabello, Wanderson Costa, Pedro Ribeiro de Andrade Neto, A. Soterroni, F. Ramos","doi":"10.1080/13658816.2023.2241144","DOIUrl":null,"url":null,"abstract":"Abstract Land-use and land-cover change (LULCC) models are important tools for environmental policy planning. LULCC models are frequently constrained to the generation of projections at a specific resolution. However, subsequent studies or models may require finer resolutions. In this work, a downscaling method for LULCC models is proposed that uses a mathematical programming approach to disaggregate the multiple layers of the land-use change projections while respecting a series of constraints. The method is calibrated and validated with MapBiomas data for the years 2000 and 2018 converted for the GLOBIOM-Brazil model, successfully predicting land-use at a finer resolution. Also, as proof of concept, the calibrated model is also applied for GLOBIOM-Brazil projections for 2050. This paper advances the state-of-the-art by proposing and testing a downscaling method using a mathematical programming approach with spatial effects, that operates on multi-layered land-use projections with a range of constraints while allowing flexibility on the number and type of the specific layers and constraints.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2020 - 2042"},"PeriodicalIF":4.3000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical programming approach for downscaling multi-layered multi-constraint land-use models\",\"authors\":\"R. Ramos, M. Scarabello, Wanderson Costa, Pedro Ribeiro de Andrade Neto, A. Soterroni, F. Ramos\",\"doi\":\"10.1080/13658816.2023.2241144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Land-use and land-cover change (LULCC) models are important tools for environmental policy planning. LULCC models are frequently constrained to the generation of projections at a specific resolution. However, subsequent studies or models may require finer resolutions. In this work, a downscaling method for LULCC models is proposed that uses a mathematical programming approach to disaggregate the multiple layers of the land-use change projections while respecting a series of constraints. The method is calibrated and validated with MapBiomas data for the years 2000 and 2018 converted for the GLOBIOM-Brazil model, successfully predicting land-use at a finer resolution. Also, as proof of concept, the calibrated model is also applied for GLOBIOM-Brazil projections for 2050. This paper advances the state-of-the-art by proposing and testing a downscaling method using a mathematical programming approach with spatial effects, that operates on multi-layered land-use projections with a range of constraints while allowing flexibility on the number and type of the specific layers and constraints.\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"37 1\",\"pages\":\"2020 - 2042\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2023.2241144\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2241144","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A mathematical programming approach for downscaling multi-layered multi-constraint land-use models
Abstract Land-use and land-cover change (LULCC) models are important tools for environmental policy planning. LULCC models are frequently constrained to the generation of projections at a specific resolution. However, subsequent studies or models may require finer resolutions. In this work, a downscaling method for LULCC models is proposed that uses a mathematical programming approach to disaggregate the multiple layers of the land-use change projections while respecting a series of constraints. The method is calibrated and validated with MapBiomas data for the years 2000 and 2018 converted for the GLOBIOM-Brazil model, successfully predicting land-use at a finer resolution. Also, as proof of concept, the calibrated model is also applied for GLOBIOM-Brazil projections for 2050. This paper advances the state-of-the-art by proposing and testing a downscaling method using a mathematical programming approach with spatial effects, that operates on multi-layered land-use projections with a range of constraints while allowing flexibility on the number and type of the specific layers and constraints.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.