{"title":"XUV和X射线自由电子激光器对气相原子和分子的时间分辨实验","authors":"D. Rolles","doi":"10.1080/23746149.2022.2132182","DOIUrl":null,"url":null,"abstract":"ABSTRACT Over the last 20 years, XUV and X-ray free-electron lasers have enabled a wide variety of time-resolved experiments that have dramatically advanced our understanding of ultrafast molecular dynamics on atomic length scales and femtosecond time scales. This review focuses on experimental studies of ultrafast dynamics of atoms and molecules in the gas phase, tracing the development of the field from early proof-of-principle studies to recent pump-probe experiments that elucidate the coupled electronic and nuclear dynamics during photochemical reactions with a temporal resolution that is now extending into the attosecond domain. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers\",\"authors\":\"D. Rolles\",\"doi\":\"10.1080/23746149.2022.2132182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Over the last 20 years, XUV and X-ray free-electron lasers have enabled a wide variety of time-resolved experiments that have dramatically advanced our understanding of ultrafast molecular dynamics on atomic length scales and femtosecond time scales. This review focuses on experimental studies of ultrafast dynamics of atoms and molecules in the gas phase, tracing the development of the field from early proof-of-principle studies to recent pump-probe experiments that elucidate the coupled electronic and nuclear dynamics during photochemical reactions with a temporal resolution that is now extending into the attosecond domain. Graphical abstract\",\"PeriodicalId\":7374,\"journal\":{\"name\":\"Advances in Physics: X\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics: X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/23746149.2022.2132182\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2022.2132182","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers
ABSTRACT Over the last 20 years, XUV and X-ray free-electron lasers have enabled a wide variety of time-resolved experiments that have dramatically advanced our understanding of ultrafast molecular dynamics on atomic length scales and femtosecond time scales. This review focuses on experimental studies of ultrafast dynamics of atoms and molecules in the gas phase, tracing the development of the field from early proof-of-principle studies to recent pump-probe experiments that elucidate the coupled electronic and nuclear dynamics during photochemical reactions with a temporal resolution that is now extending into the attosecond domain. Graphical abstract
期刊介绍:
Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including:
Chemistry
Materials Science
Engineering
Biology
Medicine