间歇性可再生能源驱动的CO2电化学还原过程动态优化:混合深度学习方法

IF 3 Q2 ENGINEERING, CHEMICAL
Xin Yee Tai , Lei Xing , Yue Zhang , Qian Fu , Oliver Fisher , Steve D.R. Christie , Jin Xuan
{"title":"间歇性可再生能源驱动的CO2电化学还原过程动态优化:混合深度学习方法","authors":"Xin Yee Tai ,&nbsp;Lei Xing ,&nbsp;Yue Zhang ,&nbsp;Qian Fu ,&nbsp;Oliver Fisher ,&nbsp;Steve D.R. Christie ,&nbsp;Jin Xuan","doi":"10.1016/j.dche.2023.100123","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing demand for net zero solutions has prompted the exploration of electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) systems powered by renewable energy sources. Here, we present a comprehensive AI-enabled framework for the adaptive optimisation of the dynamic eCO<sub>2</sub>RR processes in response to the intermittent renewable energy supply. The framework includes (1). a Bi-LSTM (bidirectional long-short-term memory) to predict the meteorological data for renewable energy input; (2). a deep learning surrogate model to predict the eCO<sub>2</sub>RR process performance; and (3). a NSGA-II algorithm for multi-objective optimisation, targeting the trade-off of the single-pass Faraday efficiency (FE), product yield (PY) and conversion. The framework seamlessly integrates the three different AI modules, enabling adaptive optimisation of the eCO<sub>2</sub>RR system composed of electrolyser stacks and renewable energy sources, and providing insights into system's performance and feasibility under real-world conditions.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"9 ","pages":"Article 100123"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic optimisation of CO2 electrochemical reduction processes driven by intermittent renewable energy: Hybrid deep learning approach\",\"authors\":\"Xin Yee Tai ,&nbsp;Lei Xing ,&nbsp;Yue Zhang ,&nbsp;Qian Fu ,&nbsp;Oliver Fisher ,&nbsp;Steve D.R. Christie ,&nbsp;Jin Xuan\",\"doi\":\"10.1016/j.dche.2023.100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing demand for net zero solutions has prompted the exploration of electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) systems powered by renewable energy sources. Here, we present a comprehensive AI-enabled framework for the adaptive optimisation of the dynamic eCO<sub>2</sub>RR processes in response to the intermittent renewable energy supply. The framework includes (1). a Bi-LSTM (bidirectional long-short-term memory) to predict the meteorological data for renewable energy input; (2). a deep learning surrogate model to predict the eCO<sub>2</sub>RR process performance; and (3). a NSGA-II algorithm for multi-objective optimisation, targeting the trade-off of the single-pass Faraday efficiency (FE), product yield (PY) and conversion. The framework seamlessly integrates the three different AI modules, enabling adaptive optimisation of the eCO<sub>2</sub>RR system composed of electrolyser stacks and renewable energy sources, and providing insights into system's performance and feasibility under real-world conditions.</p></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"9 \",\"pages\":\"Article 100123\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508123000418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508123000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

对净零排放解决方案日益增长的需求促使人们探索可再生能源驱动的电化学二氧化碳还原反应(eCO2RR)系统。在这里,我们提出了一个全面的人工智能支持框架,用于动态eCO2RR过程的自适应优化,以响应间歇性可再生能源供应。该框架包括:(1)双向长短期记忆模型(Bi-LSTM),用于预测可再生能源输入的气象数据;(2)预测eCO2RR过程性能的深度学习代理模型;(3)针对单次法拉第效率(FE)、产率(PY)和转化率之间的权衡,采用NSGA-II算法进行多目标优化。该框架无缝集成了三种不同的人工智能模块,实现了由电解槽堆和可再生能源组成的eCO2RR系统的自适应优化,并提供了对系统在现实条件下的性能和可行性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic optimisation of CO2 electrochemical reduction processes driven by intermittent renewable energy: Hybrid deep learning approach

The increasing demand for net zero solutions has prompted the exploration of electrochemical CO2 reduction reaction (eCO2RR) systems powered by renewable energy sources. Here, we present a comprehensive AI-enabled framework for the adaptive optimisation of the dynamic eCO2RR processes in response to the intermittent renewable energy supply. The framework includes (1). a Bi-LSTM (bidirectional long-short-term memory) to predict the meteorological data for renewable energy input; (2). a deep learning surrogate model to predict the eCO2RR process performance; and (3). a NSGA-II algorithm for multi-objective optimisation, targeting the trade-off of the single-pass Faraday efficiency (FE), product yield (PY) and conversion. The framework seamlessly integrates the three different AI modules, enabling adaptive optimisation of the eCO2RR system composed of electrolyser stacks and renewable energy sources, and providing insights into system's performance and feasibility under real-world conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信