{"title":"[MIM+]2[C(CN)3-]2离子液体聚集模型的物理化学性质研究","authors":"Batoul Maki̇abadi̇, M. Zakari̇anezhad","doi":"10.22036/PCR.2020.209284.1703","DOIUrl":null,"url":null,"abstract":"In present work, the aggregation behavior of ion-pairs in [MIM+]2[C(CN)3-]2 ionic liquid was investigated. The quantum chemical calculations were carried out to determine the structural parameters, interaction energies, hydrogen bonding, physical and topological properties of the clusters formed in the ionic liquid of [MIM+]2[C(CN)3-]2. The solvent effect on the stability of clusters was examined. The Gibbs free energy of solvation and the Gibbs free binding energy of clusters in various solvents were calculated. The results show that with decreasing the polarity of the solvent, the tendency to the formation of aggregate increases. Also, the solvation energies of the clusters increase with decreasing the solvent's dielectric constant. The NBO analysis was performed to evaluate the charge transfer in complexes. The AIM analysis was performed in order to characterize intermolecular interactions.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of Physicochemical Properties of Aggregated Models of [MIM+]2[C(CN)3-]2 Ionic Liquid: A Theoretical Study\",\"authors\":\"Batoul Maki̇abadi̇, M. Zakari̇anezhad\",\"doi\":\"10.22036/PCR.2020.209284.1703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In present work, the aggregation behavior of ion-pairs in [MIM+]2[C(CN)3-]2 ionic liquid was investigated. The quantum chemical calculations were carried out to determine the structural parameters, interaction energies, hydrogen bonding, physical and topological properties of the clusters formed in the ionic liquid of [MIM+]2[C(CN)3-]2. The solvent effect on the stability of clusters was examined. The Gibbs free energy of solvation and the Gibbs free binding energy of clusters in various solvents were calculated. The results show that with decreasing the polarity of the solvent, the tendency to the formation of aggregate increases. Also, the solvation energies of the clusters increase with decreasing the solvent's dielectric constant. The NBO analysis was performed to evaluate the charge transfer in complexes. The AIM analysis was performed in order to characterize intermolecular interactions.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2020.209284.1703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.209284.1703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of Physicochemical Properties of Aggregated Models of [MIM+]2[C(CN)3-]2 Ionic Liquid: A Theoretical Study
In present work, the aggregation behavior of ion-pairs in [MIM+]2[C(CN)3-]2 ionic liquid was investigated. The quantum chemical calculations were carried out to determine the structural parameters, interaction energies, hydrogen bonding, physical and topological properties of the clusters formed in the ionic liquid of [MIM+]2[C(CN)3-]2. The solvent effect on the stability of clusters was examined. The Gibbs free energy of solvation and the Gibbs free binding energy of clusters in various solvents were calculated. The results show that with decreasing the polarity of the solvent, the tendency to the formation of aggregate increases. Also, the solvation energies of the clusters increase with decreasing the solvent's dielectric constant. The NBO analysis was performed to evaluate the charge transfer in complexes. The AIM analysis was performed in order to characterize intermolecular interactions.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.