{"title":"新罗图表与\\(b=5\\)和 \\(b=6\\)","authors":"A. Makhnev, I. Belousov","doi":"10.15826/umj.2021.2.004","DOIUrl":null,"url":null,"abstract":"A \\(Q\\)-polynomial Shilla graph with \\(b = 5\\) has intersection arrays \\(\\{105t,4(21t+1),16(t+1); 1,4 (t+1),84t\\}\\), \\(t\\in\\{3,4,19\\}\\). The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of \\(Q\\)-polynomial Shilla graphs with \\(b = 6\\) are found.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SHILLA GRAPHS WITH \\\\(b=5\\\\) AND \\\\(b=6\\\\)\",\"authors\":\"A. Makhnev, I. Belousov\",\"doi\":\"10.15826/umj.2021.2.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A \\\\(Q\\\\)-polynomial Shilla graph with \\\\(b = 5\\\\) has intersection arrays \\\\(\\\\{105t,4(21t+1),16(t+1); 1,4 (t+1),84t\\\\}\\\\), \\\\(t\\\\in\\\\{3,4,19\\\\}\\\\). The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of \\\\(Q\\\\)-polynomial Shilla graphs with \\\\(b = 6\\\\) are found.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2021.2.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2021.2.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
摘要
具有\(b=5\)的\(Q\)-多项式Shilla图具有相交数组\(\{105t,4(21t+1),16(t+1);1,4(t+1,84t\),\(t\ in \{3,4,19\)。证明了具有这些交数组的距离正则图是不存在的。此外,还得到了具有\(b=6\)的\(Q\)-多项式Shilla图的可行交数组。
A \(Q\)-polynomial Shilla graph with \(b = 5\) has intersection arrays \(\{105t,4(21t+1),16(t+1); 1,4 (t+1),84t\}\), \(t\in\{3,4,19\}\). The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of \(Q\)-polynomial Shilla graphs with \(b = 6\) are found.