新罗图表与\(b=5\)和 \(b=6\)

Q3 Mathematics
A. Makhnev, I. Belousov
{"title":"新罗图表与\\(b=5\\)和 \\(b=6\\)","authors":"A. Makhnev, I. Belousov","doi":"10.15826/umj.2021.2.004","DOIUrl":null,"url":null,"abstract":"A \\(Q\\)-polynomial Shilla graph with \\(b = 5\\) has intersection arrays \\(\\{105t,4(21t+1),16(t+1); 1,4 (t+1),84t\\}\\), \\(t\\in\\{3,4,19\\}\\). The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of \\(Q\\)-polynomial Shilla graphs with \\(b = 6\\) are found.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SHILLA GRAPHS WITH \\\\(b=5\\\\) AND \\\\(b=6\\\\)\",\"authors\":\"A. Makhnev, I. Belousov\",\"doi\":\"10.15826/umj.2021.2.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A \\\\(Q\\\\)-polynomial Shilla graph with \\\\(b = 5\\\\) has intersection arrays \\\\(\\\\{105t,4(21t+1),16(t+1); 1,4 (t+1),84t\\\\}\\\\), \\\\(t\\\\in\\\\{3,4,19\\\\}\\\\). The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of \\\\(Q\\\\)-polynomial Shilla graphs with \\\\(b = 6\\\\) are found.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2021.2.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2021.2.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

具有\(b=5\)的\(Q\)-多项式Shilla图具有相交数组\(\{105t,4(21t+1),16(t+1);1,4(t+1,84t\),\(t\ in \{3,4,19\)。证明了具有这些交数组的距离正则图是不存在的。此外,还得到了具有\(b=6\)的\(Q\)-多项式Shilla图的可行交数组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SHILLA GRAPHS WITH \(b=5\) AND \(b=6\)
A \(Q\)-polynomial Shilla graph with \(b = 5\) has intersection arrays \(\{105t,4(21t+1),16(t+1); 1,4 (t+1),84t\}\), \(t\in\{3,4,19\}\). The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of \(Q\)-polynomial Shilla graphs with \(b = 6\) are found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信