多层光学涂层合成问题的加速优化方法研究

Q3 Engineering
A. Mitsa, P. Stetsyuk, Alexander Levchuk, V. Petsko, I. Povkhan
{"title":"多层光学涂层合成问题的加速优化方法研究","authors":"A. Mitsa, P. Stetsyuk, Alexander Levchuk, V. Petsko, I. Povkhan","doi":"10.34229/1028-0979-2021-6-2","DOIUrl":null,"url":null,"abstract":"Five ways to speed up the multidimensional search in order to solve the problem of synthesis of multilayer optical coatings by using the methods of zero and first orders have been considered. The first way is to use an analytical derivative for the target quality function of the multilayer coating. It allows us to calculate accurately (within the computer arithmetic) the value of the gradient of a smooth objective function and generalized gradient of a non-smooth objective one. The first way requires the same number of arithmetic operations as well as finite-difference methods of calculating the gradient and the generalized gradient. The second way is to use a speedy finding of the objective function gradient using the prefix- and suffix-arrays in the analytical method of calculating the gradient. This technique allows us to reduce the number of arithmetic operations thrice for large-scale problems. The third way is the use of tabulating the values of trigonometric functions to calculate the characteristic matrices. This technique reduces the execution time of multiplication operations of characteristic matrices ten times depending on the computer’s specifications. For some computer architectures, this advantage is more than 140 times. The fourth method is the use of the golden section method for the one-dimensional optimization in the problems of synthesis of optical coatings. In particular, when solving one partial problem it is shown that the ternary search method requires approximately 40% more time than the golden section method. The fifth way is to use the effective implementation of multiplication of two matrices. It lies in changing the order of the second and third cycles for the well-known method of multiplying two matrices and fixing in a common variable value of the element of the first matrix. This allows us to speed up significantly the multiplication operation of two matrices. For matrices having 1000 x 1000 dimension the acceleration is from 2 to 15 times, depending on the computer's specifications.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE ACCELERATION OF OPTIMIZATION METHODS FOR THE PROBLEM OF SYNTHESIS OF MULTILAYER OPTICAL COATINGS\",\"authors\":\"A. Mitsa, P. Stetsyuk, Alexander Levchuk, V. Petsko, I. Povkhan\",\"doi\":\"10.34229/1028-0979-2021-6-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Five ways to speed up the multidimensional search in order to solve the problem of synthesis of multilayer optical coatings by using the methods of zero and first orders have been considered. The first way is to use an analytical derivative for the target quality function of the multilayer coating. It allows us to calculate accurately (within the computer arithmetic) the value of the gradient of a smooth objective function and generalized gradient of a non-smooth objective one. The first way requires the same number of arithmetic operations as well as finite-difference methods of calculating the gradient and the generalized gradient. The second way is to use a speedy finding of the objective function gradient using the prefix- and suffix-arrays in the analytical method of calculating the gradient. This technique allows us to reduce the number of arithmetic operations thrice for large-scale problems. The third way is the use of tabulating the values of trigonometric functions to calculate the characteristic matrices. This technique reduces the execution time of multiplication operations of characteristic matrices ten times depending on the computer’s specifications. For some computer architectures, this advantage is more than 140 times. The fourth method is the use of the golden section method for the one-dimensional optimization in the problems of synthesis of optical coatings. In particular, when solving one partial problem it is shown that the ternary search method requires approximately 40% more time than the golden section method. The fifth way is to use the effective implementation of multiplication of two matrices. It lies in changing the order of the second and third cycles for the well-known method of multiplying two matrices and fixing in a common variable value of the element of the first matrix. This allows us to speed up significantly the multiplication operation of two matrices. For matrices having 1000 x 1000 dimension the acceleration is from 2 to 15 times, depending on the computer's specifications.\",\"PeriodicalId\":54874,\"journal\":{\"name\":\"Journal of Automation and Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34229/1028-0979-2021-6-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-6-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了利用零阶和一阶方法解决多层光学镀膜合成问题时加快多维搜索速度的五种方法。第一种方法是对多层涂层的目标质量函数使用解析导数。它允许我们(在计算机算法范围内)精确地计算光滑目标函数的梯度值和非光滑目标函数的广义梯度值。第一种方法需要相同数量的算术运算以及计算梯度和广义梯度的有限差分方法。第二种方法是在计算梯度的解析方法中,利用前缀和后缀数组快速找到目标函数梯度。这种技术使我们能够将大规模问题的算术运算次数减少三倍。第三种方法是利用三角函数的值制表来计算特征矩阵。根据计算机的规格,这种技术将特征矩阵的乘法运算的执行时间减少了十倍。对于某些计算机体系结构,这个优势超过140倍。第四种方法是利用黄金分割法对光学镀膜合成问题进行一维优化。特别是,当求解一个局部问题时,表明三元搜索法比黄金分割法需要大约40%的时间。第五种方法是使用两个矩阵乘法的有效实现。它在于改变第二个和第三个循环的顺序,这种众所周知的方法是将两个矩阵相乘,并将第一个矩阵的元素固定在一个公共变量值中。这使我们能够显著加快两个矩阵的乘法运算。对于具有1000 x 1000维度的矩阵,加速度从2到15倍不等,具体取决于计算机的规格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE ACCELERATION OF OPTIMIZATION METHODS FOR THE PROBLEM OF SYNTHESIS OF MULTILAYER OPTICAL COATINGS
Five ways to speed up the multidimensional search in order to solve the problem of synthesis of multilayer optical coatings by using the methods of zero and first orders have been considered. The first way is to use an analytical derivative for the target quality function of the multilayer coating. It allows us to calculate accurately (within the computer arithmetic) the value of the gradient of a smooth objective function and generalized gradient of a non-smooth objective one. The first way requires the same number of arithmetic operations as well as finite-difference methods of calculating the gradient and the generalized gradient. The second way is to use a speedy finding of the objective function gradient using the prefix- and suffix-arrays in the analytical method of calculating the gradient. This technique allows us to reduce the number of arithmetic operations thrice for large-scale problems. The third way is the use of tabulating the values of trigonometric functions to calculate the characteristic matrices. This technique reduces the execution time of multiplication operations of characteristic matrices ten times depending on the computer’s specifications. For some computer architectures, this advantage is more than 140 times. The fourth method is the use of the golden section method for the one-dimensional optimization in the problems of synthesis of optical coatings. In particular, when solving one partial problem it is shown that the ternary search method requires approximately 40% more time than the golden section method. The fifth way is to use the effective implementation of multiplication of two matrices. It lies in changing the order of the second and third cycles for the well-known method of multiplying two matrices and fixing in a common variable value of the element of the first matrix. This allows us to speed up significantly the multiplication operation of two matrices. For matrices having 1000 x 1000 dimension the acceleration is from 2 to 15 times, depending on the computer's specifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation and Information Sciences
Journal of Automation and Information Sciences AUTOMATION & CONTROL SYSTEMS-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信