分数布朗运动驱动的时滞BSDEs

IF 0.3 Q4 STATISTICS & PROBABILITY
Sadibou Aidara, Ibrahima Sané
{"title":"分数布朗运动驱动的时滞BSDEs","authors":"Sadibou Aidara, Ibrahima Sané","doi":"10.1515/rose-2023-2014","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with a class of delay backward stochastic differential equations driven by fractional Brownian motion (with Hurst parameter H greater than 1 2 {\\frac{1}{2}} ). In this type of equation, a generator at time t can depend not only on the present but also on the past solutions. We essentially establish existence and uniqueness of a solution in the case of Lipschitz coefficients and non-Lipschitz coefficients. The stochastic integral used throughout the paper is a divergence-type integral.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delay BSDEs driven by fractional Brownian motion\",\"authors\":\"Sadibou Aidara, Ibrahima Sané\",\"doi\":\"10.1515/rose-2023-2014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with a class of delay backward stochastic differential equations driven by fractional Brownian motion (with Hurst parameter H greater than 1 2 {\\\\frac{1}{2}} ). In this type of equation, a generator at time t can depend not only on the present but also on the past solutions. We essentially establish existence and uniqueness of a solution in the case of Lipschitz coefficients and non-Lipschitz coefficients. The stochastic integral used throughout the paper is a divergence-type integral.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一类分数布朗运动驱动的时滞后向随机微分方程(Hurst参数H大于12)。在这种类型的方程中,时间t的生成器不仅可以依赖于现在的解,还可以依赖于过去的解。在Lipschitz系数和非Lipschitz-系数的情况下,我们本质上建立了解的存在性和唯一性。本文中使用的随机积分是一个发散型积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delay BSDEs driven by fractional Brownian motion
Abstract This paper deals with a class of delay backward stochastic differential equations driven by fractional Brownian motion (with Hurst parameter H greater than 1 2 {\frac{1}{2}} ). In this type of equation, a generator at time t can depend not only on the present but also on the past solutions. We essentially establish existence and uniqueness of a solution in the case of Lipschitz coefficients and non-Lipschitz coefficients. The stochastic integral used throughout the paper is a divergence-type integral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信