(2+1)维双曲型非线性薛定谔方程的调制不稳定性分析、光学孤子和其他解

IF 1.1 Q2 MATHEMATICS, APPLIED
T. Sulaiman, U. Younas, M. Younis, J. Ahmad, S. Rehman, M. Bilal, A. Yusuf
{"title":"(2+1)维双曲型非线性薛定谔方程的调制不稳定性分析、光学孤子和其他解","authors":"T. Sulaiman, U. Younas, M. Younis, J. Ahmad, S. Rehman, M. Bilal, A. Yusuf","doi":"10.22034/CMDE.2020.38990.1711","DOIUrl":null,"url":null,"abstract":"The current study utilizes the extended sinh-Gordon equation expansion and ($frac{G^{prime}}{G^2}$)-expansion function methods in constructing various optical soliton and other solutions to the (2+1)-dimensional hyperbolic nonlinear Schr${ddot o}$dinger's equation which describes the elevation of water wave surface for slowly modulated wave trains in deep water in hydrodynamics. We secure different kinds of solutions like optical dark, bright, singular, combo solitons as well as hyperbolic and trigonometric functions solutions. Moreover, singular periodic wave solutions are recovered and the constraint conditions which provide the guarantee to the soliton solutions are also reported. In order to shed more light on these novel solutions, graphical features 3D, 2D and contour with some suitable choice of parameter values have been depicted. We also discuss the stability analysis of the studied nonlinear model with aid of modulation instability analysis.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Modulation instability analysis, optical solitons and other solutions to the (2+1)-dimensional hyperbolic nonlinear Schrodinger's equation\",\"authors\":\"T. Sulaiman, U. Younas, M. Younis, J. Ahmad, S. Rehman, M. Bilal, A. Yusuf\",\"doi\":\"10.22034/CMDE.2020.38990.1711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study utilizes the extended sinh-Gordon equation expansion and ($frac{G^{prime}}{G^2}$)-expansion function methods in constructing various optical soliton and other solutions to the (2+1)-dimensional hyperbolic nonlinear Schr${ddot o}$dinger's equation which describes the elevation of water wave surface for slowly modulated wave trains in deep water in hydrodynamics. We secure different kinds of solutions like optical dark, bright, singular, combo solitons as well as hyperbolic and trigonometric functions solutions. Moreover, singular periodic wave solutions are recovered and the constraint conditions which provide the guarantee to the soliton solutions are also reported. In order to shed more light on these novel solutions, graphical features 3D, 2D and contour with some suitable choice of parameter values have been depicted. We also discuss the stability analysis of the studied nonlinear model with aid of modulation instability analysis.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.38990.1711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.38990.1711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 16

摘要

目前的研究利用扩展的sinh-Gordon方程展开和($frac{G^{prime}}{G^2}$)展开函数方法来构造(2+1)维双曲非线性Schr${ddoto}$dinger方程的各种光孤子和其他解,该方程描述了水动力学中深水中慢调制波列的水波表面高程。我们获得了不同类型的解决方案,如光学暗、亮、奇异、组合孤子以及双曲和三角函数解决方案。此外,还恢复了奇异周期波解,并报道了为孤立子解提供保证的约束条件。为了进一步阐明这些新的解决方案,已经描述了具有一些适当参数值选择的图形特征3D、2D和轮廓。借助调制不稳定性分析,我们还讨论了所研究的非线性模型的稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation instability analysis, optical solitons and other solutions to the (2+1)-dimensional hyperbolic nonlinear Schrodinger's equation
The current study utilizes the extended sinh-Gordon equation expansion and ($frac{G^{prime}}{G^2}$)-expansion function methods in constructing various optical soliton and other solutions to the (2+1)-dimensional hyperbolic nonlinear Schr${ddot o}$dinger's equation which describes the elevation of water wave surface for slowly modulated wave trains in deep water in hydrodynamics. We secure different kinds of solutions like optical dark, bright, singular, combo solitons as well as hyperbolic and trigonometric functions solutions. Moreover, singular periodic wave solutions are recovered and the constraint conditions which provide the guarantee to the soliton solutions are also reported. In order to shed more light on these novel solutions, graphical features 3D, 2D and contour with some suitable choice of parameter values have been depicted. We also discuss the stability analysis of the studied nonlinear model with aid of modulation instability analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信