沉浸和无界卡斯帕罗夫积:将球体嵌入欧几里得空间

IF 0.7 2区 数学 Q2 MATHEMATICS
W. D. Suijlekom, L. Verhoeven
{"title":"沉浸和无界卡斯帕罗夫积:将球体嵌入欧几里得空间","authors":"W. D. Suijlekom, L. Verhoeven","doi":"10.4171/jncg/451","DOIUrl":null,"url":null,"abstract":"We construct an unbounded representative for the shriek class associated to the embeddings of spheres into Euclidean space. We equip this unbounded Kasparov cycle with a connection and compute the unbounded Kasparov product with the Dirac operator on $\\mathbb R^{n+1}$. We find that the resulting spectral triple for the algebra $C(\\mathbb S^n)$ differs from the Dirac operator on the round sphere by a so-called index cycle, whose class in $KK_0(\\mathbb C, \\mathbb C)$ represents the multiplicative unit. At all points we check that our construction involving the unbounded Kasparov product is compatible with the bounded Kasparov product using Kucerovsky's criterion and we thus capture the composition law for the shriek map for these immersions at the unbounded KK-theoretical level.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Immersions and the unbounded Kasparov product: embedding spheres into Euclidean space\",\"authors\":\"W. D. Suijlekom, L. Verhoeven\",\"doi\":\"10.4171/jncg/451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct an unbounded representative for the shriek class associated to the embeddings of spheres into Euclidean space. We equip this unbounded Kasparov cycle with a connection and compute the unbounded Kasparov product with the Dirac operator on $\\\\mathbb R^{n+1}$. We find that the resulting spectral triple for the algebra $C(\\\\mathbb S^n)$ differs from the Dirac operator on the round sphere by a so-called index cycle, whose class in $KK_0(\\\\mathbb C, \\\\mathbb C)$ represents the multiplicative unit. At all points we check that our construction involving the unbounded Kasparov product is compatible with the bounded Kasparov product using Kucerovsky's criterion and we thus capture the composition law for the shriek map for these immersions at the unbounded KK-theoretical level.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/451\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/451","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们构造了一个无界代表,表示与球体嵌入欧几里得空间有关的尖叫类。我们给这个无界卡斯帕罗夫循环配上一个连接,并在$\mathbb R^{n+1}$上用狄拉克算子计算无界卡斯帕罗夫积。我们发现代数$C(\mathbb S^n)$得到的谱三重与圆球上的狄拉克算子有一个所谓的索引循环,其在$KK_0(\mathbb C, \mathbb C)$中的类表示乘法单位。在所有的点上,我们使用Kucerovsky准则检查了涉及无界卡斯帕罗夫积的构造与有界卡斯帕罗夫积的兼容,从而我们在无界kk -理论水平上捕获了这些浸入的尖声图的组成规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immersions and the unbounded Kasparov product: embedding spheres into Euclidean space
We construct an unbounded representative for the shriek class associated to the embeddings of spheres into Euclidean space. We equip this unbounded Kasparov cycle with a connection and compute the unbounded Kasparov product with the Dirac operator on $\mathbb R^{n+1}$. We find that the resulting spectral triple for the algebra $C(\mathbb S^n)$ differs from the Dirac operator on the round sphere by a so-called index cycle, whose class in $KK_0(\mathbb C, \mathbb C)$ represents the multiplicative unit. At all points we check that our construction involving the unbounded Kasparov product is compatible with the bounded Kasparov product using Kucerovsky's criterion and we thus capture the composition law for the shriek map for these immersions at the unbounded KK-theoretical level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信