超图的一个新的输运距离及其关联Ricci曲率

Pub Date : 2021-05-14 DOI:10.1515/agms-2022-0135
Tomoya Akamatsu
{"title":"超图的一个新的输运距离及其关联Ricci曲率","authors":"Tomoya Akamatsu","doi":"10.1515/agms-2022-0135","DOIUrl":null,"url":null,"abstract":"Abstract The coarse Ricci curvature of graphs introduced by Ollivier as well as its modification by Lin–Lu– Yau have been studied from various aspects. In this paper, we propose a new transport distance appropriate for hypergraphs and study a generalization of Lin–Lu–Yau type curvature of hypergraphs. As an application, we derive a Bonnet–Myers type estimate for hypergraphs under a lower Ricci curvature bound associated with our transport distance. We remark that our transport distance is new even for graphs and worthy of further study.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New Transport Distance and Its Associated Ricci Curvature of Hypergraphs\",\"authors\":\"Tomoya Akamatsu\",\"doi\":\"10.1515/agms-2022-0135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The coarse Ricci curvature of graphs introduced by Ollivier as well as its modification by Lin–Lu– Yau have been studied from various aspects. In this paper, we propose a new transport distance appropriate for hypergraphs and study a generalization of Lin–Lu–Yau type curvature of hypergraphs. As an application, we derive a Bonnet–Myers type estimate for hypergraphs under a lower Ricci curvature bound associated with our transport distance. We remark that our transport distance is new even for graphs and worthy of further study.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要从多个方面研究了Ollivier引入的图的粗糙Ricci曲率以及Lin–Lu–Yau对其的修正。在本文中,我们提出了一个适用于超图的新的输运距离,并研究了超图的Lin–Lu–Yau型曲率的推广。作为一个应用,我们推导了超图在与传输距离相关的较低Ricci曲率界下的Bonnet–Myers型估计。我们注意到,即使对于图形来说,我们的运输距离也是新的,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A New Transport Distance and Its Associated Ricci Curvature of Hypergraphs
Abstract The coarse Ricci curvature of graphs introduced by Ollivier as well as its modification by Lin–Lu– Yau have been studied from various aspects. In this paper, we propose a new transport distance appropriate for hypergraphs and study a generalization of Lin–Lu–Yau type curvature of hypergraphs. As an application, we derive a Bonnet–Myers type estimate for hypergraphs under a lower Ricci curvature bound associated with our transport distance. We remark that our transport distance is new even for graphs and worthy of further study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信