用于矢量值铣削力测量的基于弯曲的测功机

Q2 Engineering
C. Ramsauer, David Leitner, C. Habersohn, T. Schmitz, K. Yamazaki, F. Bleicher
{"title":"用于矢量值铣削力测量的基于弯曲的测功机","authors":"C. Ramsauer, David Leitner, C. Habersohn, T. Schmitz, K. Yamazaki, F. Bleicher","doi":"10.36897/jme/161234","DOIUrl":null,"url":null,"abstract":"Variation in cutting forces with cutting parameter selection, tool geometry, and wear status plays an important role for milling process evaluation and modeling. While piezoelectric force measurement is commercially available, it is often considered a precise but expensive method. This paper presents a novel solution for vector-valued cutting force measurement. The table-mounted, flexure-based kinematics provide three degrees of freedom that are used to measure the in-process milling force vector components in the working plane by low-cost optical sensors. Based on analytical models and FEM analysis, an appropriate design was derived. The assembly and testing of the developed dynamometer are presented. A test setup based on a machining center was used for the system evaluation and the data are compared to the forces measured by a commercially available, piezoelectric cutting force dynamometer.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexure-based dynamometer for vector-valued milling force measurement\",\"authors\":\"C. Ramsauer, David Leitner, C. Habersohn, T. Schmitz, K. Yamazaki, F. Bleicher\",\"doi\":\"10.36897/jme/161234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variation in cutting forces with cutting parameter selection, tool geometry, and wear status plays an important role for milling process evaluation and modeling. While piezoelectric force measurement is commercially available, it is often considered a precise but expensive method. This paper presents a novel solution for vector-valued cutting force measurement. The table-mounted, flexure-based kinematics provide three degrees of freedom that are used to measure the in-process milling force vector components in the working plane by low-cost optical sensors. Based on analytical models and FEM analysis, an appropriate design was derived. The assembly and testing of the developed dynamometer are presented. A test setup based on a machining center was used for the system evaluation and the data are compared to the forces measured by a commercially available, piezoelectric cutting force dynamometer.\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/161234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/161234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

切削力随切削参数选择、刀具几何形状和磨损状态的变化在铣削过程评估和建模中起着重要作用。虽然压电力测量在商业上是可用的,但它通常被认为是一种精确但昂贵的方法。本文提出了一种新的矢量值切削力测量方法。安装在工作台上的基于弯曲的运动学提供了三个自由度,用于通过低成本的光学传感器测量工作平面中的加工过程铣削力矢量分量。基于分析模型和有限元分析,得出了合适的设计方案。介绍了研制的测功机的装配和试验情况。使用基于加工中心的测试装置进行系统评估,并将数据与商用压电切削力测功机测得的力进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexure-based dynamometer for vector-valued milling force measurement
Variation in cutting forces with cutting parameter selection, tool geometry, and wear status plays an important role for milling process evaluation and modeling. While piezoelectric force measurement is commercially available, it is often considered a precise but expensive method. This paper presents a novel solution for vector-valued cutting force measurement. The table-mounted, flexure-based kinematics provide three degrees of freedom that are used to measure the in-process milling force vector components in the working plane by low-cost optical sensors. Based on analytical models and FEM analysis, an appropriate design was derived. The assembly and testing of the developed dynamometer are presented. A test setup based on a machining center was used for the system evaluation and the data are compared to the forces measured by a commercially available, piezoelectric cutting force dynamometer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信