{"title":"低能级热密度对端侧泵浦Ce:Nd:YAG太阳能激光器性能的影响","authors":"S. Payziyev, A. Sherniyozov","doi":"10.1117/1.JPE.12.044501","DOIUrl":null,"url":null,"abstract":"Abstract. We report the results of a theoretical study of the combined end-side pumped solar lasers to solve the problem associated with a recent experimental finding where the unexpected underperformance of the Ce doped Nd:YAG lasers in comparison to pure Nd:YAG lasers was observed. For this, we have developed a theoretical model based on space-dependent rate equations, which considers the effect of the thermal population of the laser levels on the laser output. It is shown that the main reason for the lower laser performance of recently experimentally realized Ce:Nd:YAG solar laser in the end-pumped regime and the fracture of the Ce:Nd:YAG rod at the process is the excessively high thermal load on the end of the laser rod. As a result of our study, we propose easily-feasible solutions based on optimal pumping and cooling configurations. The results of this study also demonstrate that under the necessary conditions, using Ce:Nd:YAG as an alternative to Nd:YAG in the combined end-side pumping configuration could increase the laser output by more than 1.5 times.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"044501 - 044501"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of thermal population of lower laser levels on the performance of end-side-pumped Ce:Nd:YAG solar laser\",\"authors\":\"S. Payziyev, A. Sherniyozov\",\"doi\":\"10.1117/1.JPE.12.044501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We report the results of a theoretical study of the combined end-side pumped solar lasers to solve the problem associated with a recent experimental finding where the unexpected underperformance of the Ce doped Nd:YAG lasers in comparison to pure Nd:YAG lasers was observed. For this, we have developed a theoretical model based on space-dependent rate equations, which considers the effect of the thermal population of the laser levels on the laser output. It is shown that the main reason for the lower laser performance of recently experimentally realized Ce:Nd:YAG solar laser in the end-pumped regime and the fracture of the Ce:Nd:YAG rod at the process is the excessively high thermal load on the end of the laser rod. As a result of our study, we propose easily-feasible solutions based on optimal pumping and cooling configurations. The results of this study also demonstrate that under the necessary conditions, using Ce:Nd:YAG as an alternative to Nd:YAG in the combined end-side pumping configuration could increase the laser output by more than 1.5 times.\",\"PeriodicalId\":16781,\"journal\":{\"name\":\"Journal of Photonics for Energy\",\"volume\":\"12 1\",\"pages\":\"044501 - 044501\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photonics for Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JPE.12.044501\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.044501","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of thermal population of lower laser levels on the performance of end-side-pumped Ce:Nd:YAG solar laser
Abstract. We report the results of a theoretical study of the combined end-side pumped solar lasers to solve the problem associated with a recent experimental finding where the unexpected underperformance of the Ce doped Nd:YAG lasers in comparison to pure Nd:YAG lasers was observed. For this, we have developed a theoretical model based on space-dependent rate equations, which considers the effect of the thermal population of the laser levels on the laser output. It is shown that the main reason for the lower laser performance of recently experimentally realized Ce:Nd:YAG solar laser in the end-pumped regime and the fracture of the Ce:Nd:YAG rod at the process is the excessively high thermal load on the end of the laser rod. As a result of our study, we propose easily-feasible solutions based on optimal pumping and cooling configurations. The results of this study also demonstrate that under the necessary conditions, using Ce:Nd:YAG as an alternative to Nd:YAG in the combined end-side pumping configuration could increase the laser output by more than 1.5 times.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.