使用预先训练的深度学习架构对多模态数据进行网络欺凌检测

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Subbaraju Pericherla, I. E
{"title":"使用预先训练的深度学习架构对多模态数据进行网络欺凌检测","authors":"Subbaraju Pericherla, I. E","doi":"10.16925/2357-6014.2021.03.09","DOIUrl":null,"url":null,"abstract":"Cyberbullying is a big challenging task in the social media era. The forms of bullying are increasing with the increase of digital technologies. In the past, most of the bullying happened through text messages. Now bullies take advantage of technology, they try bullying others in different forms such as images, videos, and emojis. In this paper, we proposed an approach to identify cyberbullying on both text and image data combinations. We used RoBERTa and Xception deep learning architectures to generate word embeddings from the text data and the image respectively. LightGBM classifier is used to classify bullying and non-bullying tweets. The experiments conducted on 2100 samples of combined data of text and image. The proposed approach efficiently classifies bullying data with F1-score of 80% and outperforms as compared to existing approaches.","PeriodicalId":41023,"journal":{"name":"Ingenieria Solidaria","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cyberbullying detection on multi-modal data using pre-trained deep learning architectures\",\"authors\":\"Subbaraju Pericherla, I. E\",\"doi\":\"10.16925/2357-6014.2021.03.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyberbullying is a big challenging task in the social media era. The forms of bullying are increasing with the increase of digital technologies. In the past, most of the bullying happened through text messages. Now bullies take advantage of technology, they try bullying others in different forms such as images, videos, and emojis. In this paper, we proposed an approach to identify cyberbullying on both text and image data combinations. We used RoBERTa and Xception deep learning architectures to generate word embeddings from the text data and the image respectively. LightGBM classifier is used to classify bullying and non-bullying tweets. The experiments conducted on 2100 samples of combined data of text and image. The proposed approach efficiently classifies bullying data with F1-score of 80% and outperforms as compared to existing approaches.\",\"PeriodicalId\":41023,\"journal\":{\"name\":\"Ingenieria Solidaria\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ingenieria Solidaria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16925/2357-6014.2021.03.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria Solidaria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16925/2357-6014.2021.03.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

在社交媒体时代,网络欺凌是一项极具挑战性的任务。随着数字技术的发展,欺凌的形式也在增加。在过去,大多数欺凌都是通过短信发生的。现在恶霸们利用科技,他们尝试用不同的形式欺负别人,比如图片、视频和表情符号。在本文中,我们提出了一种基于文本和图像数据组合识别网络欺凌的方法。我们使用RoBERTa和Xception深度学习架构分别从文本数据和图像中生成词嵌入。LightGBM分类器用于对欺凌和非欺凌推文进行分类。在2100个文本和图像组合数据样本上进行了实验。该方法对f1得分为80%的欺凌数据进行有效分类,优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyberbullying detection on multi-modal data using pre-trained deep learning architectures
Cyberbullying is a big challenging task in the social media era. The forms of bullying are increasing with the increase of digital technologies. In the past, most of the bullying happened through text messages. Now bullies take advantage of technology, they try bullying others in different forms such as images, videos, and emojis. In this paper, we proposed an approach to identify cyberbullying on both text and image data combinations. We used RoBERTa and Xception deep learning architectures to generate word embeddings from the text data and the image respectively. LightGBM classifier is used to classify bullying and non-bullying tweets. The experiments conducted on 2100 samples of combined data of text and image. The proposed approach efficiently classifies bullying data with F1-score of 80% and outperforms as compared to existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ingenieria Solidaria
Ingenieria Solidaria ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信