具有磁势和常电位的非线性Schrödinger方程的浓度

IF 2.1 2区 数学 Q1 MATHEMATICS
Liping Wang, Chunyi Zhao
{"title":"具有磁势和常电位的非线性Schrödinger方程的浓度","authors":"Liping Wang, Chunyi Zhao","doi":"10.1515/ans-2022-0026","DOIUrl":null,"url":null,"abstract":"Abstract This article studies point concentration phenomena of nonlinear Schrödinger equations with magnetic potentials and constant electric potentials. The existing results show that a common magnetic field has no effect on the locations of point concentrations, as long as the electric potential is not a constant. This article finds out the role of the magnetic fields in the locations of point concentrations when the electric potential is a constant.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":"574 - 593"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Concentrations for nonlinear Schrödinger equations with magnetic potentials and constant electric potentials\",\"authors\":\"Liping Wang, Chunyi Zhao\",\"doi\":\"10.1515/ans-2022-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article studies point concentration phenomena of nonlinear Schrödinger equations with magnetic potentials and constant electric potentials. The existing results show that a common magnetic field has no effect on the locations of point concentrations, as long as the electric potential is not a constant. This article finds out the role of the magnetic fields in the locations of point concentrations when the electric potential is a constant.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"22 1\",\"pages\":\"574 - 593\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0026\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0026","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了具有磁势和常电位的非线性薛定谔方程的点集中现象。现有的结果表明,只要电势不是常数,公共磁场对点集中的位置没有影响。本文发现了当电势为常数时,磁场在点集中位置中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentrations for nonlinear Schrödinger equations with magnetic potentials and constant electric potentials
Abstract This article studies point concentration phenomena of nonlinear Schrödinger equations with magnetic potentials and constant electric potentials. The existing results show that a common magnetic field has no effect on the locations of point concentrations, as long as the electric potential is not a constant. This article finds out the role of the magnetic fields in the locations of point concentrations when the electric potential is a constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信