{"title":"具有磁势和常电位的非线性Schrödinger方程的浓度","authors":"Liping Wang, Chunyi Zhao","doi":"10.1515/ans-2022-0026","DOIUrl":null,"url":null,"abstract":"Abstract This article studies point concentration phenomena of nonlinear Schrödinger equations with magnetic potentials and constant electric potentials. The existing results show that a common magnetic field has no effect on the locations of point concentrations, as long as the electric potential is not a constant. This article finds out the role of the magnetic fields in the locations of point concentrations when the electric potential is a constant.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":"574 - 593"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Concentrations for nonlinear Schrödinger equations with magnetic potentials and constant electric potentials\",\"authors\":\"Liping Wang, Chunyi Zhao\",\"doi\":\"10.1515/ans-2022-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article studies point concentration phenomena of nonlinear Schrödinger equations with magnetic potentials and constant electric potentials. The existing results show that a common magnetic field has no effect on the locations of point concentrations, as long as the electric potential is not a constant. This article finds out the role of the magnetic fields in the locations of point concentrations when the electric potential is a constant.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"22 1\",\"pages\":\"574 - 593\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0026\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0026","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Concentrations for nonlinear Schrödinger equations with magnetic potentials and constant electric potentials
Abstract This article studies point concentration phenomena of nonlinear Schrödinger equations with magnetic potentials and constant electric potentials. The existing results show that a common magnetic field has no effect on the locations of point concentrations, as long as the electric potential is not a constant. This article finds out the role of the magnetic fields in the locations of point concentrations when the electric potential is a constant.
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.