比较成本效益分析的马尔可夫和非马尔可夫替代方案:来自宫颈癌病例的见解

IF 1.5 Q3 HEALTH CARE SCIENCES & SERVICES
Cristina del Campo , Jiaru Bai , L. Robin Keller
{"title":"比较成本效益分析的马尔可夫和非马尔可夫替代方案:来自宫颈癌病例的见解","authors":"Cristina del Campo ,&nbsp;Jiaru Bai ,&nbsp;L. Robin Keller","doi":"10.1016/j.orhc.2019.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Markov model allows medical prognosis to be modeled with health state transitions over time and are particularly useful for decisions regarding diseases where uncertain events and outcomes may occur. To provide sufficient detail for operations researchers to carry out a Markov analysis, we present a detailed example of a Markov model with five health states with monthly transitions with stationary transition probabilities between states to model the cost and effectiveness of two treatments for advanced cervical cancer. A different approach uses survival curves to directly model the fraction of patients in each state at each time period without the Markov property. We use this alternative method to analyze the cervical cancer case and compare the Markov and non-Markov approaches. These models provide useful insights about both the effectiveness of treatments and the associated costs for healthcare decision makers.</p></div>","PeriodicalId":46320,"journal":{"name":"Operations Research for Health Care","volume":"21 ","pages":"Pages 32-43"},"PeriodicalIF":1.5000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.orhc.2019.04.001","citationCount":"8","resultStr":"{\"title\":\"Comparing Markov and non-Markov alternatives for cost-effectiveness analysis: Insights from a cervical cancer case\",\"authors\":\"Cristina del Campo ,&nbsp;Jiaru Bai ,&nbsp;L. Robin Keller\",\"doi\":\"10.1016/j.orhc.2019.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Markov model allows medical prognosis to be modeled with health state transitions over time and are particularly useful for decisions regarding diseases where uncertain events and outcomes may occur. To provide sufficient detail for operations researchers to carry out a Markov analysis, we present a detailed example of a Markov model with five health states with monthly transitions with stationary transition probabilities between states to model the cost and effectiveness of two treatments for advanced cervical cancer. A different approach uses survival curves to directly model the fraction of patients in each state at each time period without the Markov property. We use this alternative method to analyze the cervical cancer case and compare the Markov and non-Markov approaches. These models provide useful insights about both the effectiveness of treatments and the associated costs for healthcare decision makers.</p></div>\",\"PeriodicalId\":46320,\"journal\":{\"name\":\"Operations Research for Health Care\",\"volume\":\"21 \",\"pages\":\"Pages 32-43\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.orhc.2019.04.001\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research for Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211692318301097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research for Health Care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211692318301097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 8

摘要

马尔可夫模型允许用健康状态随时间的变化对医疗预后进行建模,对于可能发生不确定事件和结果的疾病的决策特别有用。为了给运行学研究人员进行马尔可夫分析提供足够的细节,我们提出了一个马尔可夫模型的详细示例,该模型具有五个健康状态,每个月都有状态之间的平稳过渡概率,以模拟两种晚期宫颈癌治疗的成本和效果。另一种不同的方法使用生存曲线来直接模拟每个时期每个状态的患者比例,而不使用马尔可夫属性。我们使用这种替代方法来分析宫颈癌病例,并比较马尔可夫方法和非马尔可夫方法。这些模型为医疗保健决策者提供了有关治疗效果和相关成本的有用见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Markov and non-Markov alternatives for cost-effectiveness analysis: Insights from a cervical cancer case

Markov model allows medical prognosis to be modeled with health state transitions over time and are particularly useful for decisions regarding diseases where uncertain events and outcomes may occur. To provide sufficient detail for operations researchers to carry out a Markov analysis, we present a detailed example of a Markov model with five health states with monthly transitions with stationary transition probabilities between states to model the cost and effectiveness of two treatments for advanced cervical cancer. A different approach uses survival curves to directly model the fraction of patients in each state at each time period without the Markov property. We use this alternative method to analyze the cervical cancer case and compare the Markov and non-Markov approaches. These models provide useful insights about both the effectiveness of treatments and the associated costs for healthcare decision makers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research for Health Care
Operations Research for Health Care HEALTH CARE SCIENCES & SERVICES-
CiteScore
3.90
自引率
0.00%
发文量
9
审稿时长
69 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信