基于树的个性化治疗规则集成方法

Q3 Medicine
Kehao Zhu, Ying Huang, Xiao‐Hua Zhou
{"title":"基于树的个性化治疗规则集成方法","authors":"Kehao Zhu, Ying Huang, Xiao‐Hua Zhou","doi":"10.1080/24709360.2018.1435608","DOIUrl":null,"url":null,"abstract":"ABSTRACT There is a growing interest in the development of statistical methods for personalized medicine or precision medicine, especially for deriving optimal individualized treatment rules (ITRs). An ITR recommends a patient to a treatment based on the patient's characteristics. The common parametric methods for deriving an optimal ITR, which model the clinical endpoint as a function of the patient's characteristics, can have suboptimal performance when the conditional mean model is misspecified. Recent methodology development has cast the problem of deriving optimal ITR under a weighted classification framework. Under this weighted classification framework, we develop a weighted random forests (W-RF) algorithm that derives an optimal ITR nonparametrically. In addition, with the W-RF algorithm, we propose the variable importance measures for quantifying relative relevance of the patient's characteristics to treatment selection, and the out-of-bag estimator for the population average outcome under the estimated optimal ITR. Our proposed methods are evaluated through intensive simulation studies. We illustrate the application of our methods using data from Clinical Antipsychotic Trials of Intervention Effectiveness Alzheimer's Disease Study.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"2 1","pages":"61 - 83"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2018.1435608","citationCount":"2","resultStr":"{\"title\":\"Tree-based ensemble methods for individualized treatment rules\",\"authors\":\"Kehao Zhu, Ying Huang, Xiao‐Hua Zhou\",\"doi\":\"10.1080/24709360.2018.1435608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT There is a growing interest in the development of statistical methods for personalized medicine or precision medicine, especially for deriving optimal individualized treatment rules (ITRs). An ITR recommends a patient to a treatment based on the patient's characteristics. The common parametric methods for deriving an optimal ITR, which model the clinical endpoint as a function of the patient's characteristics, can have suboptimal performance when the conditional mean model is misspecified. Recent methodology development has cast the problem of deriving optimal ITR under a weighted classification framework. Under this weighted classification framework, we develop a weighted random forests (W-RF) algorithm that derives an optimal ITR nonparametrically. In addition, with the W-RF algorithm, we propose the variable importance measures for quantifying relative relevance of the patient's characteristics to treatment selection, and the out-of-bag estimator for the population average outcome under the estimated optimal ITR. Our proposed methods are evaluated through intensive simulation studies. We illustrate the application of our methods using data from Clinical Antipsychotic Trials of Intervention Effectiveness Alzheimer's Disease Study.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"2 1\",\"pages\":\"61 - 83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2018.1435608\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2018.1435608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2018.1435608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

摘要

人们对个性化医疗或精准医疗统计方法的发展越来越感兴趣,特别是对获得最佳个性化治疗规则(itr)的统计方法。ITR会根据患者的特点向患者推荐治疗方案。常用的参数化方法是将临床终点作为患者特征的函数来建模,当条件平均模型被错误指定时,用于推导最佳ITR的常用参数化方法可能具有次优性能。最近的方法发展将最优ITR的推导问题置于加权分类框架下。在此加权分类框架下,我们开发了一种加权随机森林(W-RF)算法,该算法非参数地推导出最优ITR。此外,通过W-RF算法,我们提出了用于量化患者特征与治疗选择的相对相关性的变量重要性度量,以及在估计的最优ITR下的总体平均结果的袋外估计。我们提出的方法是通过密集的模拟研究来评估的。我们使用阿尔茨海默病临床抗精神病药物干预有效性研究的数据来说明我们的方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tree-based ensemble methods for individualized treatment rules
ABSTRACT There is a growing interest in the development of statistical methods for personalized medicine or precision medicine, especially for deriving optimal individualized treatment rules (ITRs). An ITR recommends a patient to a treatment based on the patient's characteristics. The common parametric methods for deriving an optimal ITR, which model the clinical endpoint as a function of the patient's characteristics, can have suboptimal performance when the conditional mean model is misspecified. Recent methodology development has cast the problem of deriving optimal ITR under a weighted classification framework. Under this weighted classification framework, we develop a weighted random forests (W-RF) algorithm that derives an optimal ITR nonparametrically. In addition, with the W-RF algorithm, we propose the variable importance measures for quantifying relative relevance of the patient's characteristics to treatment selection, and the out-of-bag estimator for the population average outcome under the estimated optimal ITR. Our proposed methods are evaluated through intensive simulation studies. We illustrate the application of our methods using data from Clinical Antipsychotic Trials of Intervention Effectiveness Alzheimer's Disease Study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信