{"title":"用于检查ACM SIG文档结构和格式的自动化软件系统","authors":"A. Mirza, M. Şah","doi":"10.1080/13614568.2016.1209247","DOIUrl":null,"url":null,"abstract":"ABSTRACT Microsoft (MS) Office Word is one of the most commonly used software tools for creating documents. MS Word 2007 and above uses XML to represent the structure of MS Word documents. Metadata about the documents are automatically created using Office Open XML (OOXML) syntax. We develop a new framework, which is called ADFCS (Automated Document Format Checking System) that takes the advantage of the OOXML metadata, in order to extract semantic information from MS Office Word documents. In particular, we develop a new ontology for Association for Computing Machinery (ACM) Special Interested Group (SIG) documents for representing the structure and format of these documents by using OWL (Web Ontology Language). Then, the metadata is extracted automatically in RDF (Resource Description Framework) according to this ontology using the developed software. Finally, we generate extensive rules in order to infer whether the documents are formatted according to ACM SIG standards. This paper, introduces ACM SIG ontology, metadata extraction process, inference engine, ADFCS online user interface, system evaluation and user study evaluations.","PeriodicalId":54386,"journal":{"name":"New Review of Hypermedia and Multimedia","volume":"23 1","pages":"112 - 140"},"PeriodicalIF":1.4000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13614568.2016.1209247","citationCount":"3","resultStr":"{\"title\":\"Automated software system for checking the structure and format of ACM SIG documents\",\"authors\":\"A. Mirza, M. Şah\",\"doi\":\"10.1080/13614568.2016.1209247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Microsoft (MS) Office Word is one of the most commonly used software tools for creating documents. MS Word 2007 and above uses XML to represent the structure of MS Word documents. Metadata about the documents are automatically created using Office Open XML (OOXML) syntax. We develop a new framework, which is called ADFCS (Automated Document Format Checking System) that takes the advantage of the OOXML metadata, in order to extract semantic information from MS Office Word documents. In particular, we develop a new ontology for Association for Computing Machinery (ACM) Special Interested Group (SIG) documents for representing the structure and format of these documents by using OWL (Web Ontology Language). Then, the metadata is extracted automatically in RDF (Resource Description Framework) according to this ontology using the developed software. Finally, we generate extensive rules in order to infer whether the documents are formatted according to ACM SIG standards. This paper, introduces ACM SIG ontology, metadata extraction process, inference engine, ADFCS online user interface, system evaluation and user study evaluations.\",\"PeriodicalId\":54386,\"journal\":{\"name\":\"New Review of Hypermedia and Multimedia\",\"volume\":\"23 1\",\"pages\":\"112 - 140\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2017-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13614568.2016.1209247\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Review of Hypermedia and Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/13614568.2016.1209247\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Review of Hypermedia and Multimedia","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/13614568.2016.1209247","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
摘要
摘要Microsoft Office Word是最常用的文档创建软件工具之一。MSWord2007及以上版本使用XML来表示MSWord文档的结构。有关文档的元数据是使用Office Open XML(OOXML)语法自动创建的。我们开发了一个新的框架,称为ADFCS(自动文档格式检查系统),它利用OOXML元数据的优势,从MS Office Word文档中提取语义信息。特别是,我们为计算机器协会(ACM)特殊兴趣小组(SIG)文档开发了一个新的本体,通过使用OWL(Web本体语言)来表示这些文档的结构和格式。然后,利用开发的软件,根据该本体,在RDF(资源描述框架)中自动提取元数据。最后,我们生成了广泛的规则,以推断文档是否根据ACM SIG标准进行了格式化。本文介绍了ACM-SIG本体、元数据提取过程、推理引擎、ADFCS在线用户界面、系统评价和用户学习评价。
Automated software system for checking the structure and format of ACM SIG documents
ABSTRACT Microsoft (MS) Office Word is one of the most commonly used software tools for creating documents. MS Word 2007 and above uses XML to represent the structure of MS Word documents. Metadata about the documents are automatically created using Office Open XML (OOXML) syntax. We develop a new framework, which is called ADFCS (Automated Document Format Checking System) that takes the advantage of the OOXML metadata, in order to extract semantic information from MS Office Word documents. In particular, we develop a new ontology for Association for Computing Machinery (ACM) Special Interested Group (SIG) documents for representing the structure and format of these documents by using OWL (Web Ontology Language). Then, the metadata is extracted automatically in RDF (Resource Description Framework) according to this ontology using the developed software. Finally, we generate extensive rules in order to infer whether the documents are formatted according to ACM SIG standards. This paper, introduces ACM SIG ontology, metadata extraction process, inference engine, ADFCS online user interface, system evaluation and user study evaluations.
期刊介绍:
The New Review of Hypermedia and Multimedia (NRHM) is an interdisciplinary journal providing a focus for research covering practical and theoretical developments in hypermedia, hypertext, and interactive multimedia.