J. M. R. Luque, E. Moreno, I. E. Kovalsky, J. G. Seijo, V. S. Solís Neffa
{"title":"自多倍体复合体的多倍体性、基因组大小变异和多样化——以石蒜科石蒜为例","authors":"J. M. R. Luque, E. Moreno, I. E. Kovalsky, J. G. Seijo, V. S. Solís Neffa","doi":"10.1080/14772000.2022.2036854","DOIUrl":null,"url":null,"abstract":"Polyploidy is a major force in plant evolution. The possession of more than two chromosome complements may affect the genetic and genomic constitution and the phenotypes of polyploids, having consequences for their ecology, geography and diversification. Here, we used Turnera sidoides autopolyploid complex to assess the effect of polyploidy on genome size and on the diversification of this species. The remarkable diversity in habitat preferences, ploidy levels and multiple independent origins of polyploids, make this complex a suitable model for disentangling the effects of phylogenetic relationships and environmental conditions on the variation in genome size. We used an integrative approach comprising genome size estimations in 53 (diploid to hexaploid) populations of the different subspecies and morphotypes of T. sidoides, a molecular phylogenetic reconstruction and a biogeographical analysis to identified closely related diploids and polyploids that remained in the same habitat aiming to answer the following questions: 1) does polyploidy per se induce a significant change of the Cx-value?; 2) is the Cx-value variation an adaptive response/consequence to different environmental gradients?; and 3) does polyploidy enable the range expansion of diversified diploid lineages within the same ecoregion?. Comparisons of Cx-values among phylogenetically related diploids–polyploids provided evidence that polyploidy is not the main factor determining the Cx variation. Instead, the Cx-values varied associated with few climatic variables along latitudinal and climatic gradients, suggesting that variation in genome size would have been an adaptive response to different habitats. The analysis of the environmental preferences of diploid and polyploids within each lineage provides evidence that autopolyploidy further promoted the range expansion of the already diversified diploids. These results together with the morphological constancy among different cytotypes within lineages suggest that autopolyploidy per se did not contribute significantly to the morphological and taxonomic diversification, but enabled further range expansion of lineages within the complex.","PeriodicalId":54437,"journal":{"name":"Systematics and Biodiversity","volume":" ","pages":"1 - 18"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polyploidy, genome size variation and diversification in an autopolyploid complex: the case of Turnera sidoides (Passifloraceae, Turneroideae)\",\"authors\":\"J. M. R. Luque, E. Moreno, I. E. Kovalsky, J. G. Seijo, V. S. Solís Neffa\",\"doi\":\"10.1080/14772000.2022.2036854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyploidy is a major force in plant evolution. The possession of more than two chromosome complements may affect the genetic and genomic constitution and the phenotypes of polyploids, having consequences for their ecology, geography and diversification. Here, we used Turnera sidoides autopolyploid complex to assess the effect of polyploidy on genome size and on the diversification of this species. The remarkable diversity in habitat preferences, ploidy levels and multiple independent origins of polyploids, make this complex a suitable model for disentangling the effects of phylogenetic relationships and environmental conditions on the variation in genome size. We used an integrative approach comprising genome size estimations in 53 (diploid to hexaploid) populations of the different subspecies and morphotypes of T. sidoides, a molecular phylogenetic reconstruction and a biogeographical analysis to identified closely related diploids and polyploids that remained in the same habitat aiming to answer the following questions: 1) does polyploidy per se induce a significant change of the Cx-value?; 2) is the Cx-value variation an adaptive response/consequence to different environmental gradients?; and 3) does polyploidy enable the range expansion of diversified diploid lineages within the same ecoregion?. Comparisons of Cx-values among phylogenetically related diploids–polyploids provided evidence that polyploidy is not the main factor determining the Cx variation. Instead, the Cx-values varied associated with few climatic variables along latitudinal and climatic gradients, suggesting that variation in genome size would have been an adaptive response to different habitats. The analysis of the environmental preferences of diploid and polyploids within each lineage provides evidence that autopolyploidy further promoted the range expansion of the already diversified diploids. These results together with the morphological constancy among different cytotypes within lineages suggest that autopolyploidy per se did not contribute significantly to the morphological and taxonomic diversification, but enabled further range expansion of lineages within the complex.\",\"PeriodicalId\":54437,\"journal\":{\"name\":\"Systematics and Biodiversity\",\"volume\":\" \",\"pages\":\"1 - 18\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematics and Biodiversity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/14772000.2022.2036854\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematics and Biodiversity","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/14772000.2022.2036854","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Polyploidy, genome size variation and diversification in an autopolyploid complex: the case of Turnera sidoides (Passifloraceae, Turneroideae)
Polyploidy is a major force in plant evolution. The possession of more than two chromosome complements may affect the genetic and genomic constitution and the phenotypes of polyploids, having consequences for their ecology, geography and diversification. Here, we used Turnera sidoides autopolyploid complex to assess the effect of polyploidy on genome size and on the diversification of this species. The remarkable diversity in habitat preferences, ploidy levels and multiple independent origins of polyploids, make this complex a suitable model for disentangling the effects of phylogenetic relationships and environmental conditions on the variation in genome size. We used an integrative approach comprising genome size estimations in 53 (diploid to hexaploid) populations of the different subspecies and morphotypes of T. sidoides, a molecular phylogenetic reconstruction and a biogeographical analysis to identified closely related diploids and polyploids that remained in the same habitat aiming to answer the following questions: 1) does polyploidy per se induce a significant change of the Cx-value?; 2) is the Cx-value variation an adaptive response/consequence to different environmental gradients?; and 3) does polyploidy enable the range expansion of diversified diploid lineages within the same ecoregion?. Comparisons of Cx-values among phylogenetically related diploids–polyploids provided evidence that polyploidy is not the main factor determining the Cx variation. Instead, the Cx-values varied associated with few climatic variables along latitudinal and climatic gradients, suggesting that variation in genome size would have been an adaptive response to different habitats. The analysis of the environmental preferences of diploid and polyploids within each lineage provides evidence that autopolyploidy further promoted the range expansion of the already diversified diploids. These results together with the morphological constancy among different cytotypes within lineages suggest that autopolyploidy per se did not contribute significantly to the morphological and taxonomic diversification, but enabled further range expansion of lineages within the complex.
期刊介绍:
Systematics and Biodiversity is devoted to whole-organism biology. It is a quarterly, international, peer-reviewed, life science journal, without page charges, which is published by Taylor & Francis for The Natural History Museum, London. The criterion for publication is scientific merit. Systematics and Biodiversity documents the diversity of organisms in all natural phyla, through taxonomic papers that have a broad context (not single species descriptions), while also addressing topical issues relating to biological collections, and the principles of systematics. It particularly emphasises the importance and multi-disciplinary significance of systematics, with contributions which address the implications of other fields for systematics, or which advance our understanding of other fields through taxonomic knowledge, especially in relation to the nature, origins, and conservation of biodiversity, at all taxonomic levels.
The journal does not publish single species descriptions, monographs or applied research nor alpha species descriptions. Taxonomic manuscripts must include modern methods such as cladistics or phylogenetic analysis.