连续流的平均阴影性质与混沌

IF 0.4 Q4 MATHEMATICS
Ying-xuan Niu
{"title":"连续流的平均阴影性质与混沌","authors":"Ying-xuan Niu","doi":"10.1080/1726037X.2017.1390190","DOIUrl":null,"url":null,"abstract":"Abstract Let X be a compact metric space and ϕ : R × X → X be a continuous flow. In this paper, we prove that if ϕ has the average shadowing property and the almost periodic points of ϕ are dense in X, then ϕ × ϕ is topologically ergodic. As a corollary, we obtain that if a Lyapunov stable flow ϕ has the average-shadowing property, then X is a singleton.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"15 1","pages":"109 - 99"},"PeriodicalIF":0.4000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2017.1390190","citationCount":"3","resultStr":"{\"title\":\"The average shadowing property and chaos for continuous flows\",\"authors\":\"Ying-xuan Niu\",\"doi\":\"10.1080/1726037X.2017.1390190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X be a compact metric space and ϕ : R × X → X be a continuous flow. In this paper, we prove that if ϕ has the average shadowing property and the almost periodic points of ϕ are dense in X, then ϕ × ϕ is topologically ergodic. As a corollary, we obtain that if a Lyapunov stable flow ϕ has the average-shadowing property, then X is a singleton.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"15 1\",\"pages\":\"109 - 99\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2017.1390190\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2017.1390190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2017.1390190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设X为紧度量空间,φ: R × X→X为连续流。在本文中,我们证明了如果φ具有平均阴影性质并且φ的概周期点在X中是密集的,则φ × φ是拓扑遍历的。作为推论,我们得到,如果一个李雅普诺夫稳定流φ具有平均阴影性质,那么X是一个单态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The average shadowing property and chaos for continuous flows
Abstract Let X be a compact metric space and ϕ : R × X → X be a continuous flow. In this paper, we prove that if ϕ has the average shadowing property and the almost periodic points of ϕ are dense in X, then ϕ × ϕ is topologically ergodic. As a corollary, we obtain that if a Lyapunov stable flow ϕ has the average-shadowing property, then X is a singleton.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信