有限模糊Max Plus树自动机的等价性、不模糊性和序列性

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Erik Paul
{"title":"有限模糊Max Plus树自动机的等价性、不模糊性和序列性","authors":"Erik Paul","doi":"10.1142/s0129054123480027","DOIUrl":null,"url":null,"abstract":"We show that the equivalence, unambiguity, and sequentiality problems are decidable for finitely ambiguous max-plus tree automata. A max-plus tree automaton is a weighted tree automaton over the max-plus semiring. A max-plus tree automaton is called finitely ambiguous if the number of accepting runs on every tree is bounded by a global constant and it is called unambiguous if there exists at most one accepting run on every tree. For the equivalence problem, we show that for two finitely ambiguous max-plus tree automata, it is decidable whether both assign the same weight to every tree. For the unambiguity and sequentiality problems, we show that for every finitely ambiguous max-plus tree automaton, both the existence of an equivalent unambiguous automaton and the existence of an equivalent deterministic automaton are decidable.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalence, Unambiguity, and Sequentiality of Finitely Ambiguous Max-Plus Tree Automata\",\"authors\":\"Erik Paul\",\"doi\":\"10.1142/s0129054123480027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the equivalence, unambiguity, and sequentiality problems are decidable for finitely ambiguous max-plus tree automata. A max-plus tree automaton is a weighted tree automaton over the max-plus semiring. A max-plus tree automaton is called finitely ambiguous if the number of accepting runs on every tree is bounded by a global constant and it is called unambiguous if there exists at most one accepting run on every tree. For the equivalence problem, we show that for two finitely ambiguous max-plus tree automata, it is decidable whether both assign the same weight to every tree. For the unambiguity and sequentiality problems, we show that for every finitely ambiguous max-plus tree automaton, both the existence of an equivalent unambiguous automaton and the existence of an equivalent deterministic automaton are decidable.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054123480027\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054123480027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了有限二义最大+树自动机的等价性、非二义性和顺序性问题是可判定的。最大+树自动机是最大+半环上的加权树自动机。如果在每棵树上接受运行的次数由一个全局常数限定,则称为最大+树自动机是有限模糊的;如果在每棵树上最多存在一个接受运行,则称为无模糊的。对于等价问题,我们证明了对于两个有限模糊的最大+树自动机,它们是否赋予每棵树相同的权值是可决定的。对于无二义性和序列性问题,我们证明了对于每一个有限二义性最大+树自动机,等价的无二义自动机和等价的确定性自动机的存在性都是可判定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivalence, Unambiguity, and Sequentiality of Finitely Ambiguous Max-Plus Tree Automata
We show that the equivalence, unambiguity, and sequentiality problems are decidable for finitely ambiguous max-plus tree automata. A max-plus tree automaton is a weighted tree automaton over the max-plus semiring. A max-plus tree automaton is called finitely ambiguous if the number of accepting runs on every tree is bounded by a global constant and it is called unambiguous if there exists at most one accepting run on every tree. For the equivalence problem, we show that for two finitely ambiguous max-plus tree automata, it is decidable whether both assign the same weight to every tree. For the unambiguity and sequentiality problems, we show that for every finitely ambiguous max-plus tree automaton, both the existence of an equivalent unambiguous automaton and the existence of an equivalent deterministic automaton are decidable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信