Zn-Al层状双氢氧化物对CO2电化学还原的电催化性能

IF 2.2 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Noboru Yamaguchi, Ryosuke Nakazato, Keeko Matsumoto, Masako Kakesu, N. Rosero-Navarro, A. Miura, K. Tadanaga
{"title":"Zn-Al层状双氢氧化物对CO2电化学还原的电催化性能","authors":"Noboru Yamaguchi, Ryosuke Nakazato, Keeko Matsumoto, Masako Kakesu, N. Rosero-Navarro, A. Miura, K. Tadanaga","doi":"10.1080/21870764.2023.2236441","DOIUrl":null,"url":null,"abstract":"ABSTRACT Electrocatalytic CO2 reduction reaction (CO2RR) has attracted considerable attention as a technology to recycle carbon dioxide (CO2) into raw materials for chemicals using renewable energies. In this study, the electrocatalytic CO2RR activity of Zn-Al layered double hydroxides (LDHs) was studied. Zn-Al LDHs loaded carbon sheets were prepared, and CO2 RR was performed using CO2-saturated KHCO3 electrolyte to confirm the catalytic ability of Zn-Al LDH. Zn-Al LDHs intercalated with CO3 2− anion were synthesized using the mixture of metal nitrates with the different molar ratio of Zn2+/Al3+ by the co-precipitation process, whose corresponding products were named as Zn2Al1 LDH, Zn3Al1 LDH, and Zn4Al1 LDH, respectively. Except for Zn2Al1 LDH, ZnO was observed to exist as an impurity. The synthesized Zn-Al LDHs exhibited the electrocatalytic CO2RR activity for CO formation. In the case of the Zn2Al1 LDH, the current density of 15 mA cm−2 was obtained with 77% selectivity for CO and 94% selectivity for (CO + H2) at − 1.4 V vs. RHE. Furthermore, Zn3Al1 and Zn4Al1 LDHs showed a significant change relating to ZnO impurities in the XRD patterns and SEM images before and after the CO2RR whereas Zn2Al1 LDH did not show it. These results indicate that Zn-Al LDH is promising as a CO2RR electrocatalyst for CO formation.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"406 - 411"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic property of Zn-Al layered double hydroxides for CO2 electrochemical reduction\",\"authors\":\"Noboru Yamaguchi, Ryosuke Nakazato, Keeko Matsumoto, Masako Kakesu, N. Rosero-Navarro, A. Miura, K. Tadanaga\",\"doi\":\"10.1080/21870764.2023.2236441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Electrocatalytic CO2 reduction reaction (CO2RR) has attracted considerable attention as a technology to recycle carbon dioxide (CO2) into raw materials for chemicals using renewable energies. In this study, the electrocatalytic CO2RR activity of Zn-Al layered double hydroxides (LDHs) was studied. Zn-Al LDHs loaded carbon sheets were prepared, and CO2 RR was performed using CO2-saturated KHCO3 electrolyte to confirm the catalytic ability of Zn-Al LDH. Zn-Al LDHs intercalated with CO3 2− anion were synthesized using the mixture of metal nitrates with the different molar ratio of Zn2+/Al3+ by the co-precipitation process, whose corresponding products were named as Zn2Al1 LDH, Zn3Al1 LDH, and Zn4Al1 LDH, respectively. Except for Zn2Al1 LDH, ZnO was observed to exist as an impurity. The synthesized Zn-Al LDHs exhibited the electrocatalytic CO2RR activity for CO formation. In the case of the Zn2Al1 LDH, the current density of 15 mA cm−2 was obtained with 77% selectivity for CO and 94% selectivity for (CO + H2) at − 1.4 V vs. RHE. Furthermore, Zn3Al1 and Zn4Al1 LDHs showed a significant change relating to ZnO impurities in the XRD patterns and SEM images before and after the CO2RR whereas Zn2Al1 LDH did not show it. These results indicate that Zn-Al LDH is promising as a CO2RR electrocatalyst for CO formation.\",\"PeriodicalId\":15130,\"journal\":{\"name\":\"Journal of Asian Ceramic Societies\",\"volume\":\"11 1\",\"pages\":\"406 - 411\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Ceramic Societies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21870764.2023.2236441\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2023.2236441","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

电催化CO2还原反应(CO2RR)作为一种利用可再生能源将二氧化碳(CO2)回收为化工原料的技术,受到了广泛的关注。本研究研究了锌铝层状双氢氧化物(LDHs)的电催化CO2RR活性。制备了负载Zn-Al LDH的碳片,并使用CO2饱和的KHCO3电解液进行CO2 RR,以验证Zn-Al LDH的催化性能。以不同Zn2+/Al3+摩尔比的金属硝酸盐为原料,通过共沉淀法合成了co32−阴离子插层的Zn-Al LDH,产物分别命名为Zn2Al1 LDH、Zn3Al1 LDH和Zn4Al1 LDH。除zn2al1ldh外,ZnO以杂质形式存在。合成的Zn-Al LDHs具有电催化CO生成的CO2RR活性。与RHE相比,Zn2Al1 LDH的电流密度为15 mA cm−2,在−1.4 V下CO选择性为77%,(CO + H2)选择性为94%。此外,在CO2RR前后的XRD和SEM图像中,Zn3Al1和Zn4Al1 LDH表现出与ZnO杂质相关的显著变化,而Zn2Al1 LDH没有表现出这种变化。这些结果表明Zn-Al LDH作为CO生成的CO2RR电催化剂是有前景的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocatalytic property of Zn-Al layered double hydroxides for CO2 electrochemical reduction
ABSTRACT Electrocatalytic CO2 reduction reaction (CO2RR) has attracted considerable attention as a technology to recycle carbon dioxide (CO2) into raw materials for chemicals using renewable energies. In this study, the electrocatalytic CO2RR activity of Zn-Al layered double hydroxides (LDHs) was studied. Zn-Al LDHs loaded carbon sheets were prepared, and CO2 RR was performed using CO2-saturated KHCO3 electrolyte to confirm the catalytic ability of Zn-Al LDH. Zn-Al LDHs intercalated with CO3 2− anion were synthesized using the mixture of metal nitrates with the different molar ratio of Zn2+/Al3+ by the co-precipitation process, whose corresponding products were named as Zn2Al1 LDH, Zn3Al1 LDH, and Zn4Al1 LDH, respectively. Except for Zn2Al1 LDH, ZnO was observed to exist as an impurity. The synthesized Zn-Al LDHs exhibited the electrocatalytic CO2RR activity for CO formation. In the case of the Zn2Al1 LDH, the current density of 15 mA cm−2 was obtained with 77% selectivity for CO and 94% selectivity for (CO + H2) at − 1.4 V vs. RHE. Furthermore, Zn3Al1 and Zn4Al1 LDHs showed a significant change relating to ZnO impurities in the XRD patterns and SEM images before and after the CO2RR whereas Zn2Al1 LDH did not show it. These results indicate that Zn-Al LDH is promising as a CO2RR electrocatalyst for CO formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Asian Ceramic Societies
Journal of Asian Ceramic Societies Materials Science-Ceramics and Composites
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
10 weeks
期刊介绍: The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信