求解双边界k-三对角区间线性系统的符号算法

IF 0.7 Q2 MATHEMATICS
Sivakumar Thirupathi, Nirmala Thamaraiselvan
{"title":"求解双边界k-三对角区间线性系统的符号算法","authors":"Sivakumar Thirupathi, Nirmala Thamaraiselvan","doi":"10.28924/2291-8639-21-2023-87","DOIUrl":null,"url":null,"abstract":"Doubly bordered k-tridiagonal interval linear systems play a crucial role in various mathematical and engineering applications where uncertainty is inherent in the system’s parameters. In this paper, we propose a novel symbolic algorithm for solving such systems efficiently. Our approach combines symbolic computation techniques with interval arithmetic to provide rigorous solutions in the form of tight interval enclosures. By exploiting the tridiagonal structure and employing a divide-and-conquer strategy, our algorithm achieves significantly reduced computational complexity compared to existing numerical methods. We also present theoretical analysis and provide numerical experiments to demonstrate the effectiveness and accuracy of our algorithm. The proposed symbolic algorithm offers a valuable tool for handling doubly bordered k-tridiagonal interval linear systems and opens up possibilities for addressing uncertainty in real-world problems with improved efficiency and reliability.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Symbolic Algorithm for Solving Doubly Bordered k-Tridiagonal Interval Linear Systems\",\"authors\":\"Sivakumar Thirupathi, Nirmala Thamaraiselvan\",\"doi\":\"10.28924/2291-8639-21-2023-87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Doubly bordered k-tridiagonal interval linear systems play a crucial role in various mathematical and engineering applications where uncertainty is inherent in the system’s parameters. In this paper, we propose a novel symbolic algorithm for solving such systems efficiently. Our approach combines symbolic computation techniques with interval arithmetic to provide rigorous solutions in the form of tight interval enclosures. By exploiting the tridiagonal structure and employing a divide-and-conquer strategy, our algorithm achieves significantly reduced computational complexity compared to existing numerical methods. We also present theoretical analysis and provide numerical experiments to demonstrate the effectiveness and accuracy of our algorithm. The proposed symbolic algorithm offers a valuable tool for handling doubly bordered k-tridiagonal interval linear systems and opens up possibilities for addressing uncertainty in real-world problems with improved efficiency and reliability.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

双边k-三对角区间线性系统在各种数学和工程应用中发挥着至关重要的作用,其中系统参数的不确定性是固有的。在本文中,我们提出了一种新的符号算法来有效地求解这类系统。我们的方法将符号计算技术与区间算术相结合,以紧区间封闭的形式提供严格的解决方案。通过利用三对角结构并采用分治策略,与现有的数值方法相比,我们的算法显著降低了计算复杂度。我们还进行了理论分析和数值实验,以证明我们算法的有效性和准确性。所提出的符号算法为处理双边界k三对角区间线性系统提供了一个有价值的工具,并为解决现实世界问题中的不确定性开辟了可能性,提高了效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Symbolic Algorithm for Solving Doubly Bordered k-Tridiagonal Interval Linear Systems
Doubly bordered k-tridiagonal interval linear systems play a crucial role in various mathematical and engineering applications where uncertainty is inherent in the system’s parameters. In this paper, we propose a novel symbolic algorithm for solving such systems efficiently. Our approach combines symbolic computation techniques with interval arithmetic to provide rigorous solutions in the form of tight interval enclosures. By exploiting the tridiagonal structure and employing a divide-and-conquer strategy, our algorithm achieves significantly reduced computational complexity compared to existing numerical methods. We also present theoretical analysis and provide numerical experiments to demonstrate the effectiveness and accuracy of our algorithm. The proposed symbolic algorithm offers a valuable tool for handling doubly bordered k-tridiagonal interval linear systems and opens up possibilities for addressing uncertainty in real-world problems with improved efficiency and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信