{"title":"功能反应系统的运行时验证和确认","authors":"Ivan Perez, H. Nilsson","doi":"10.1017/S0956796820000210","DOIUrl":null,"url":null,"abstract":"Abstract Many types of interactive applications, including reactive systems implemented in hardware, interactive physics simulations and games, raise particular challenges when it comes to testing and debugging. Reasons include de facto lack of reproducibility and difficulties of automatically generating suitable test data. This paper demonstrates that certain variants of functional reactive programming (FRP) implemented in pure functional languages can mitigate such difficulties by offering referential transparency at the level of whole programs. This opens up for a multi-pronged approach for assisting with testing and debugging that works across platforms, including assertions based on temporal logic, recording and replaying of runs (also from deployed code), and automated random testing using QuickCheck. When combined with extensible forms of FRP that allow for constrained side effects, it allows us to not only validate software simulations but to analyse the effect of faults in reactive systems, confirm the efficacy of fault tolerance mechanisms and perform software- and hardware-in-the-loop testing. The approach has been validated on non-trivial systems implemented in several existing FRP implementations, by means of careful debugging using a tool that allows the test or simulation under scrutiny to be controlled, moving along the execution time line, and pin-pointing of violations of assertions on personal computers as well as external devices.","PeriodicalId":15874,"journal":{"name":"Journal of Functional Programming","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0956796820000210","citationCount":"2","resultStr":"{\"title\":\"Runtime verification and validation of functional reactive systems\",\"authors\":\"Ivan Perez, H. Nilsson\",\"doi\":\"10.1017/S0956796820000210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many types of interactive applications, including reactive systems implemented in hardware, interactive physics simulations and games, raise particular challenges when it comes to testing and debugging. Reasons include de facto lack of reproducibility and difficulties of automatically generating suitable test data. This paper demonstrates that certain variants of functional reactive programming (FRP) implemented in pure functional languages can mitigate such difficulties by offering referential transparency at the level of whole programs. This opens up for a multi-pronged approach for assisting with testing and debugging that works across platforms, including assertions based on temporal logic, recording and replaying of runs (also from deployed code), and automated random testing using QuickCheck. When combined with extensible forms of FRP that allow for constrained side effects, it allows us to not only validate software simulations but to analyse the effect of faults in reactive systems, confirm the efficacy of fault tolerance mechanisms and perform software- and hardware-in-the-loop testing. The approach has been validated on non-trivial systems implemented in several existing FRP implementations, by means of careful debugging using a tool that allows the test or simulation under scrutiny to be controlled, moving along the execution time line, and pin-pointing of violations of assertions on personal computers as well as external devices.\",\"PeriodicalId\":15874,\"journal\":{\"name\":\"Journal of Functional Programming\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0956796820000210\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0956796820000210\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0956796820000210","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Runtime verification and validation of functional reactive systems
Abstract Many types of interactive applications, including reactive systems implemented in hardware, interactive physics simulations and games, raise particular challenges when it comes to testing and debugging. Reasons include de facto lack of reproducibility and difficulties of automatically generating suitable test data. This paper demonstrates that certain variants of functional reactive programming (FRP) implemented in pure functional languages can mitigate such difficulties by offering referential transparency at the level of whole programs. This opens up for a multi-pronged approach for assisting with testing and debugging that works across platforms, including assertions based on temporal logic, recording and replaying of runs (also from deployed code), and automated random testing using QuickCheck. When combined with extensible forms of FRP that allow for constrained side effects, it allows us to not only validate software simulations but to analyse the effect of faults in reactive systems, confirm the efficacy of fault tolerance mechanisms and perform software- and hardware-in-the-loop testing. The approach has been validated on non-trivial systems implemented in several existing FRP implementations, by means of careful debugging using a tool that allows the test or simulation under scrutiny to be controlled, moving along the execution time line, and pin-pointing of violations of assertions on personal computers as well as external devices.
期刊介绍:
Journal of Functional Programming is the only journal devoted solely to the design, implementation, and application of functional programming languages, spanning the range from mathematical theory to industrial practice. Topics covered include functional languages and extensions, implementation techniques, reasoning and proof, program transformation and synthesis, type systems, type theory, language-based security, memory management, parallelism and applications. The journal is of interest to computer scientists, software engineers, programming language researchers and mathematicians interested in the logical foundations of programming.