{"title":"(φ,τ)-差分模量和潜在半稳定表示","authors":"Léo Poyeton","doi":"10.5802/JTNB.1156","DOIUrl":null,"url":null,"abstract":"Soit $K$ un corps $p$-adique et soit $V$ une representation $p$-adique de $\\mathcal{G}_K = \\mathrm{Gal}(\\bar{K}/K)$. La surconvergence des $(\\phi,\\tau)$-modules nous permet d'attacher a $V$ un $\\phi$-module differentiel a connexion $D_{\\tau,\\mathrm{rig}}^\\dagger(V)$ sur l'anneau de Robba $\\mathbf{B}_{\\tau,\\mathrm{rig},K}^\\dagger$. On montre dans cet article comment retrouver les invariants $D_{\\mathrm{cris}}(V)$ et $D_{\\mathrm{st}}(V)$ a partir de $D_{\\tau,\\mathrm{rig}}^\\dagger(V)$, et comment caracteriser les representations potentiellement semi-stables, ainsi que celles de $E$-hauteur finie, a partir de la connexion. \nLet $K$ be a $p$-adic field and let $V$ be a $p$-adic representation of $\\mathcal{G}_K=\\mathrm{Gal}(\\bar{K}/K)$. The overconvergence of $(\\phi,\\tau)$-modules allows us to attach to $V$ a differential $\\phi$-module $D_{\\tau,\\mathrm{rig}}^\\dagger(V)$ on the Robba ring $\\mathbf{B}_{\\tau,\\mathrm{rig},K}^\\dagger$ that comes equipped with a connection. We show in this paper how to recover the invariants $D_{\\mathrm{cris}}(V)$ and $D_{\\mathrm{st}}(V)$ from $D_{\\tau,\\mathrm{rig}}^\\dagger(V)$, and give a characterization of both potentially semi-stable representations of $\\mathcal{G}_K$ and finite $E$-height representations in terms of the connection operator.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(ϕ,τ)-modules différentiels et représentations potentiellement semi-stables\",\"authors\":\"Léo Poyeton\",\"doi\":\"10.5802/JTNB.1156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soit $K$ un corps $p$-adique et soit $V$ une representation $p$-adique de $\\\\mathcal{G}_K = \\\\mathrm{Gal}(\\\\bar{K}/K)$. La surconvergence des $(\\\\phi,\\\\tau)$-modules nous permet d'attacher a $V$ un $\\\\phi$-module differentiel a connexion $D_{\\\\tau,\\\\mathrm{rig}}^\\\\dagger(V)$ sur l'anneau de Robba $\\\\mathbf{B}_{\\\\tau,\\\\mathrm{rig},K}^\\\\dagger$. On montre dans cet article comment retrouver les invariants $D_{\\\\mathrm{cris}}(V)$ et $D_{\\\\mathrm{st}}(V)$ a partir de $D_{\\\\tau,\\\\mathrm{rig}}^\\\\dagger(V)$, et comment caracteriser les representations potentiellement semi-stables, ainsi que celles de $E$-hauteur finie, a partir de la connexion. \\nLet $K$ be a $p$-adic field and let $V$ be a $p$-adic representation of $\\\\mathcal{G}_K=\\\\mathrm{Gal}(\\\\bar{K}/K)$. The overconvergence of $(\\\\phi,\\\\tau)$-modules allows us to attach to $V$ a differential $\\\\phi$-module $D_{\\\\tau,\\\\mathrm{rig}}^\\\\dagger(V)$ on the Robba ring $\\\\mathbf{B}_{\\\\tau,\\\\mathrm{rig},K}^\\\\dagger$ that comes equipped with a connection. We show in this paper how to recover the invariants $D_{\\\\mathrm{cris}}(V)$ and $D_{\\\\mathrm{st}}(V)$ from $D_{\\\\tau,\\\\mathrm{rig}}^\\\\dagger(V)$, and give a characterization of both potentially semi-stable representations of $\\\\mathcal{G}_K$ and finite $E$-height representations in terms of the connection operator.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/JTNB.1156\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/JTNB.1156","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
(ϕ,τ)-modules différentiels et représentations potentiellement semi-stables
Soit $K$ un corps $p$-adique et soit $V$ une representation $p$-adique de $\mathcal{G}_K = \mathrm{Gal}(\bar{K}/K)$. La surconvergence des $(\phi,\tau)$-modules nous permet d'attacher a $V$ un $\phi$-module differentiel a connexion $D_{\tau,\mathrm{rig}}^\dagger(V)$ sur l'anneau de Robba $\mathbf{B}_{\tau,\mathrm{rig},K}^\dagger$. On montre dans cet article comment retrouver les invariants $D_{\mathrm{cris}}(V)$ et $D_{\mathrm{st}}(V)$ a partir de $D_{\tau,\mathrm{rig}}^\dagger(V)$, et comment caracteriser les representations potentiellement semi-stables, ainsi que celles de $E$-hauteur finie, a partir de la connexion.
Let $K$ be a $p$-adic field and let $V$ be a $p$-adic representation of $\mathcal{G}_K=\mathrm{Gal}(\bar{K}/K)$. The overconvergence of $(\phi,\tau)$-modules allows us to attach to $V$ a differential $\phi$-module $D_{\tau,\mathrm{rig}}^\dagger(V)$ on the Robba ring $\mathbf{B}_{\tau,\mathrm{rig},K}^\dagger$ that comes equipped with a connection. We show in this paper how to recover the invariants $D_{\mathrm{cris}}(V)$ and $D_{\mathrm{st}}(V)$ from $D_{\tau,\mathrm{rig}}^\dagger(V)$, and give a characterization of both potentially semi-stable representations of $\mathcal{G}_K$ and finite $E$-height representations in terms of the connection operator.